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ABSTRACT 

Single domain antibodies are rapidly comes into therapeutics in last two decades due to their 

therapeutic advantages. Most of drugs are derived from antibodies based proteins. Single domain 

antibodies having advantages over the monoclonal antibodies such as small size, heat resistant, 

stability, hydrophobicity, low immunogenicity, high solubility. These are small in size hence 

called nobodies. Their production is carried outing mammalian cells for therapeutic uses. These 

single domain antibodies are now employed in drug delivery system. They are also utilized in 

identification of toxin. Single domain antibodies are recently employed in treatment diseases like 

cancer, Alzheimer’s disease, Parkinson’s disease etc. They are also employed in virus detection. 

. 
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INTRODUCTION 

The field of recombinant antibody 

technology has rapidly progressed during 

the last two decades, mainly because of the 

interest in their human therapeutic use. The 

ability to select specific human antibodies 

by display technologies and to improve their 

affinity, stability, and expression level by 

molecular evolution has further boosted the 

field. Approximately 30% of drugs in 

development are biologics, most of which 

are Ab-based proteins used as treatment for 

inflammatory diseases, cancer, and allergies 

[1].  The success of the anti-tumor necrosis 

factor (TNF) Abs has boosted the search for 

other Abs. In 2013, 22% of the sales of large 

pharmaceutical companies were biologics 

and this figure is expected to rise still further 

[2]. Monoclonal Abs (mAbs) have become 

indispensable therapeutic and research tools. 

Given that they are difficult and expensive 

to produce, they impose a heavy burden on 

healthcare and research budgets. Moreover, 

they are not suitable for some applications. 

First, they are large molecules (150 kDa), 

which limits their tissue and/or tumor 

penetration and bio distribution. Second, 

they can elicit immune reactions   that 

neutralize their activities, which sometimes 

limits the long-term use of chimeric and 

humanized Abs available on the market. 

Third, mAbs typically have a half-life of 

several days and this limits their use in 

molecular imaging because of the intense 

background signal [3, 4].  The disadvantages 

of Abs are related to their large size, efforts 

have been made to minimize them. This 

leads to the development of antigen-

antibody fragments (Fab fragments), 

variable fragments (Fv fragments), and 

single-chain variable fragments (scFv 

fragments) [5].  The stability of these newer 

antibodies also enhanced. 

During the early 1990s, Hamers, Casterman 

and her team discovered a new antibody in 

Camelidae members. Compared to older 

conventional antibody immunoglobulin G 

(IgG) Antibodies, camelid antibodies found 

to express antibodies devoid of light chains, 

called “heavy-chain-only antibodies 

(HcAbs) [6]. Although single-domain 

antibodies later were also identified in 

particular cartilaginous fish, most research 

on the biotechnological application of 

single-domain antibodies was done using 

camelids because of their ease of handling, 

including immunization [7]. 

Although they do not originate from 

humans, Nbs have a low immunogenicity 

because of a large sequence identity with the 

human VH gene family III, making them 

suitable for chronic indications. In nine 

clinical studies with incidence of antidrug 

antibodies was low (3%) and their presence 

mainly transient [8]. 

 “A single domain antibody called Nano 

body is an antibody fragment costing of 

single monomeric variable antibody 

domain.” 
PROPERTIES OF SINGLE DOMAIN 

ANTIBODIES: 

These are much smaller (12-15 kDa) than 

common antibodies (150-160kDa) [9]. A 

single domain antibody is a peptide chain of 

about 120 amino acids long comprising of 

one variable heavy chain domain (VHH) of 

a heavy chain antibody or of a common IgG 

[6]. Single domain antibodies have same 

affinity towards antigen as whole antibodies 

but, are more heat resistant and stable 

towards detergent and high concentrations 

of Urea [10]. Nano bodies derived from 

camelid are less lipophilic and more water 

soluble because several of the hallmark 

hydrophilic amino acid residues of VHHs 

was more stable than the original VH 

fragment [11, 12]. In contrast to common 

antibodies, two out of six single-domain 

antibodies survived a temperature of 90 

degree Celsius without losing their ability to 

bind antigens in 1999 study [13, 14]. 
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Stability towards gastric acid and protease 

[15-19]. The comparatively low molecular 

mass leads to a better permeability in tissues 

[20]. Unlike whole antibodies, they do not 

show complement system triggered 

cytotoxicity because they lack an Fc region 

[21]. These are potentially weak 

immunogenic [22]. 

STRUCTURE OF SINGLE DOMAIN 

ANTIBODIES: 

Variable domains derived from the anti-

body heavy (VH) and light (VL) chains are 

shaded dark gray and light gray, 

respectively, whereas constant domains (CH 

and CL) are not shaded. Note the absence of 

the light chain and CH1 domain in heavy-

chain antibodies. Anti-body domains that 

pair by non-covalent interactions are 

indicated by overlaying them. 

 

 

Figure: Schematic diagram of conventional 

antibodies (b): Heavy chain antibodies and 

fragments. 

These contains two constant domains (CH2 

and CH3), a hinge region, and an antigen-

binding or variable heavy chain domain 

(VHH) called the Nb, which retains full 

antigen-binding capacity [6]. The 

framework regions present surrounding to 

complementarity determining regions 

(CDR). It might participate in Ag 

identification and binding. [6]. about 61-

80% of contact with Ag is through this 

regions [23, 24]. Nbs are small (15 kDa) and 

can have a long protruding CDR3 loop. 

Their prolate shape exposes a convex 

paratope and both these features help them 

to access receptor clefts or binding pockets 

more easily that are inaccessible to Abs [8, 

9]. 

Also the CDRs of VHHs contain some 

characteristic features. The N-terminal part 

of CDR1 is more variable. Secondly, many 

dromedary VHHs have an extended CDR3 

that is often stabilized by an additional 

disulfide bond with a cysteine in CDR1 or 

resulting in the folding of the CDR3 loop 

across the former VL interface [25, 26, and 

27]. 

 

ADVANTAGES OF SINGLE DOMAIN 

ANTIBODIES:  

(1) Fast clearance 

(2) Single-domain nature 

(3) No decrease in library size because of 

reshuffling of VL and vh domains 

(4) Efficient refolding due to increased 

hydrophobicity and single-domain nature 

increased     hydrophobicity 

(5) Small size and extended flexible CDR3 

small size 

(6) Efficient folding due to increased 

hydrophobicity and single-domain nature 

(7) High solubility 

(8) Increased functional size of immune 

libraries       
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PRODUCTION OF SINGLE DOMAIN 

ANTIBODIES: 

Most functional complete antibodies can be 

efficiently produced using mammalian cells, 

especially when their appropriate 

glycosylation is required for therapeutic 

applications. The antibody fragments having 

absence of Fc with its N-linked 

oligosaccharide are preferably produced in 

microbes [28]. These have a shorter 

development time from gene to product and 

require simple well-established fermentation 

conditions that can be performed on large-

scale resulting in low cost [29]. The 

microbial production is mainly based on E. 

coli, yeasts, or filamentous fungi. In E. coli 

they can be produced by secretion into the 

oxidizing periplasmic space or expression in 

the reducing cytosol. In fungi the production 

can be done by cumbersome refolding of 

antibody fragments [30]. 

VHHs are mostly produced in E. coli [31, 

32]. There is only one example of VHH 

production that can be produced in 

filamentous fungi [33], which results in 

limited proteolytic degradation of the 

secreted product due to high levels of 

proteases secreted by filamentous fungi [34]. 

The yeast Saccharomyces are also capable 

of producing VHHs [35, 36]. The N-

glycosylated VHHs can also be produced by 

yeast [35]. This can affect antigen binding 

[37]. Furthermore, it could complicate their 

therapeutic use because the addition of yeast 

specific high-mannose oligosaccharides 

results in a high immunogenicity and 

decreased serum half-life because of binding 

to specific mannose receptors on cells of the 

reticulo-endothelial system [38]. 

Several VHH sequence pattern can be 

associated with their production level. First 

his presence of a potential N-linked 

glycosylation site increases production 

levels in yeast [39]. Second, the presence of 

unpaired C-terminal cysteines reduces 

expression levels [40]. Third, replacement of 

hydrophobic residues of conventional VH 

domains normally interacting with CH1 

increased scFv production in E. coli  

suggesting that the hydrophilic mutations 

that naturally occur at these positions in 

VHHs also contributes to their high 

expression level [41]. There are many 

examples of VHHs that differ by only a few 

amino acids and are produced at highly 

variable levels where the exact amino acid 

change responsible for the difference in 

production level is difficult to predict  

[26,42]. Furthermore, without such 

knowledge, VHH production can be 

enhanced by random molecular evolution 

using deoxyribonucleic acid shuffling [43] , 

as has often been done for conventional 

antibody fragments [44]. In baker’s yeast, 

the specific VHH production rate is 

correlated with growth rate [45], and can be 

up to fivefold increased by growing on 

carbon source like ethyl alcohol [46]. The 

medium is provided with supplements like 

sorbitol, casamino acids, or ethylenediamine 

tetra acetic acid improves VHH production 

by P. pastoris [47]. 

VHHs cannot recruit effector functions such 

as ADCC and CDC on their own. This limits 

their therapeutic application. Although such 

effector functions can be indirectly recruited 

using conventional antibody fragments 

binding to host immunoglobulin [48] , it 

may be more efficient to recruit these 

functions by fusing VHHs to host Fc 

domains. Production of such functional 
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antibodies requires the correct glycosylation 

of the CH2 domain, which until recently 

could only be accomplished using higher 

eukaryotic cells [49] but not by microbial 

production. But, this may now be feasible 

using P. pastoris strains with an engineered 

glycosylation machinery that are capable to 

produce proteins with a specific human 

glycoform [50]. Furthermore, transgenic 

mice containing hybrid llama/ human 

antibody loci that contain llama V regions 

and human D, J, and C regions have recently 

been used to generate human heavy-chain 

antibodies in mice [51]. 

In addition to monovalent VHHs, several 

expression formats for the production of 

VHH multimers have been described. These 

include genetic fusions of two [52, 53] or 

three VHHs [54, 55] that either recognize 

different antigens or the same repeating 

antigen to increase functional affinity. 

Although such VHH fusions are less 

efficiently produced than their monovalent 

versions, their production level exceeds that 

of their conventional-antibody-based fusion 

counterparts without aggregation or low 

solubility. However, antigen binding by the 

C-terminal VHH in such fusions can be 

compromised [52] presumably because of 

steric hindrance by the N-terminal VHH. 

 

APPLICATIONS OF SINGLE DOMAIN 

ANTIBODIES: 

(1) Nbs incorporated into drug delivery 

systems: 

Nbs can also be chemically attached to the 

surface of other drug delivery systems, such 

as Nano sized drug carriers or NPs, which 

can then be encapsulated with nonspecific 

drugs for active delivery to the site of 

interest. This is an attractive approach 

because it protects the body against systemic 

toxicity and allows solubilization of 

hydrophobic drug in hydrophilic structures, 

such as liposomes or micelles. Additionally, 

it permits administration of larger drug 

doses simultaneously, which could reduce 

the administration frequency and 

immunogenicity [56]. 

Important advances have been made with an 

Nb coupled to a drug delivery system. 

A new interesting class of carrier systems is 

the polymer some, which architecturally 

resembles liposomes but is highly stable and 

can encapsulate larger amounts of 

hydrophilic drugs compared with micelles. 

This makes them particularly interesting for 

the delivery of cargo intracellular or for the 

controlled release of drugs. As an example, 

tumor vessel-targeting polymerases 

decorated with Nbs that target PlexinD1 a 

Tran’s membrane protein overexpressed in 

tumor vasculature [57, 58] 

 (2) Toxin identification and 

detoxification: 

The use of Nbs could further enhance toxin 

neutralization. Given their good tissue 

distribution, Nbs can more easily reach and 

neutralize toxins. However, some toxins are 

small, no immunogenic polypeptides, so 

obtaining a proper immune response can be 

problematic. Nbs have been raised against 

different toxic venom fractions of the 

Androctonus australis hector scorpion 

venom (AahG50, AahII, and AahI’) [59, 60, 

61, and 62]. Multiagency induced by 

polymerization of two Nbs against the two 

most toxic venom fractions improved their 

affinity. Also, proof-of-principle was 

obtained from experiments on rats, in which 

the specific Nbs had good 
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pharmacodynamics properties and 

effectively protected against envenoming 

[63, 64]. Hemiscorpius lepturus is another 

scorpion and the most dangerous in Iraq; 

heminenecrolysin (HNc) is the major 

hemolytic and dermo-necrotic venom 

fraction known from this species. Anti-HNc 

Nbs were raised and completely protected 

against HNc-induced envenoming [65]. 

Neutralizing antivenom Nbs against a-

cobratoxin were also generated and fused to 

a human Fc fragment, thus retaining their 

high binding affinity to the toxin via the Nb 

but exerting the immunological properties of 

conventional Abs [66]. 

(3) Treatment of cancer: 

As monoclonal antibodies single domain 

antibodies (nanobodie) are distributed 

homogeneously in tumor tissue [67].  As 

anti-cancer biological agents, Nbs can be 

used as antagonistic drugs, but due to the 

absence of an Fc-effector domain, their 

efficacy as a pure immunotherapeutic is 

inferior to that of mAbs [68]. Nevertheless, 

the absence of the Fc-domain in Nbs can 

reduce the number of unwanted immune-

mediated adverse effects that are elicited by 

this domain. However, more promising 

approaches were recently intro-duced, such 

as their use as targeting moieties linked to 

effector domains and radionuclides. 

Additionally, they can be decorated on 

nanoparticles (NPs) that can be filled with 

other (small-molecule) anticancer drugs for 

active targeting to the specified tumor cells 

[69]. Two aspects need to be considered 

when such Nb – effector domain complexes 

are generated. First, the stability of the Nbs, 

which are reportedly very stable, might be 

attenuated [70] and, second, a change in Nb-

binding affinity has been reported [68]. 

(4) Targeting bacteria and phages: 

Nbs to combat bacteria can be raised against 

bacterial surface proteins to block bacterial 

attachment to host cells. Based on this 

principle, Nbs against the lactin domain of 

F18 fimbrial adhesion of the entero 

toxigenic E. coli and Shiga toxin-producing 

E. coli prevented attachment in vitro [71]. 

Pentameric Nbs enhance antigen 

agglutination, and pentavalency of Nbs can 

be conferred by exploiting the homo penta 

merization properties of nontoxic verotoxin 

B via linking the Nbs to that toxin [72]. 

Subsequently, the high-avidity pentabodies 

that bound the flagella of Campylobacter 

jejuni and other specific protease-resistant 

antiflagella Nbs demonstrated remarkable 

stability and potently inhibited the motility 

of C. jejuni [73]. The pentabodies was also 

potent in vivo, reducing C. jejuni 

colonization in the ceca of infected chickens 

[74]. By targeting the flagella, both bacterial 

motility and biofilm formation can be 

inhibited, as in the use of antiflagella Nbs 

against Pseudomonas aeruginosa [75]. 

Another protein that is important during 

biofilm formation is the biofilm-associated 

protein (Bap) and, consequently, anti-bap 

Nbs were developed as a strategy to combat 

Acinetobacter bauman-nii [186]. Nbs that 

prevent bacterial secretion of toxins can also 

be designed, such as Nbs against the type VI 

secretion system of Gram-negative bacteria 

[76]. 

 (5) Single-domain antibodies against 

fungi and protozoans: 

The potentials of single-domain antibodies 

have been only scarcely applied to fungi and 

protozoans. It is the case of the antibodies 

raised against a cell wall protein 

of Malassezia furfur, a fungus implicated in 

dandruff. Since the selected VHH antibodies 

should be potentially included in a shampoo 

formulation, they had to resist to the harsh 
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chemical conditions brought about by 

elevated concentrations of anionic and 

nonionic surfactants. Therefore, the panning 

washing conditions were adapted to 

represent the high-detergent content of 

shampoos [77]. This approach enabled the 

recovery of VHHs with specifically 

increased stability under denaturing. Nbs 

that target the paraflagellar rod protein of 

different trypano-somes have been 

described, but they are mainly useful as 

diagnostic markers of trypanosomiasis [78].  

(6) Strategies for virus detection and 

neutralization: 

Nbs can interfere at different levels of the 

viral replication cycle, such as by preventing 

virus–cell attachment, viral entry, and viral 

uncoating [79, 80]. An Nb directed against 

hepatitis C virus (HCV) specifically 

prevents viral cell entry and cell–cell 

transmission [81]. An intracellular expressed 

Nb that interferes with Rev Multimerization 

of HIV-1, a protein that is involved in 

nuclear trafficking of viral mRNAs, 

efficiently inhibited this crucial step in virus 

replication [82, 83]. Additionally, Nbs are 

useful in the study of the mechanisms of 

oligomer assembly of HIV [84]. In other 

studies, an Nb expressed in the cytosol that 

targets the nucleoprotein of influenza virus 

potently inhibited nuclear translocation [85] 

and another Nb expressed in the cytoplasm 

blocked the replication of porcine 

reproductive and respiratory syndrome virus 

(PRRSV) [86]. Prophylactic Nbs can be 

generated too, for example by generating 

modified lactobacilli that produce VHH 

antibody fragments, called ‘lacto bodies’. 
Oral administration of lacto bodies 

expressing surface-anchored anti-rotavirus 

(RV) Nbs might be prophylactic against RV-

induced diarrhea [87, 88, and 89]. 

Lactobacillus paracasei expression of 

bivalent Nbs or co-expression of two 

individual Nbs even led to protection against 

escape mutants and can also be used 

therapeutically [90,91]. 

(7) Nbs in neurodegenerative and other 

amyloid disorders: 

There are currently only symptomatic 

treatments for neurodegenerative disorders; 

no disease-modifying or neuroprotective 

therapies that alter the natural disease course 

are available. Consequently, new and 

affordable therapies are needed. 

 (a) Alzheimer’s disease: 

AD is the most common neurodegenerative 

disease. It is characterized by the cerebral 

deposit of aggregated amyloid-b (Ab) 

peptide plaques and formation of 

neurofibrillary tangles [92], resulting in 

dementia and loss of cognitive functions. Ab 

plaques are formed via proteolytic cleavage 

of a large precursor protein, amyloid 

precursor protein (APP), by enzymes such 

as Beta-site APP-cleavage enzyme (BACE-

1). Nbs that are selective for different 

amyloid (precursor) peptides have been 

produced, and Nbs that can prevent the 

formation of mature Ab fibrils by stabilizing 

Ab protofibrils have been identified [93, 94]. 

For diagnostic pur-poses, Ab-specific Nbs 

coupled to 99tmTc enabled the in vivo 

detection of vascular and parenchymal Ab 

deposits because they could cross the 

disrupted BBB, making them promising 

tools for such applications [95]. 

(a) Parkinson’s disease: 
 
Some attempts have been made to use Nbs 

to tackle the second most common 
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neurodegenerative disease, Parkinson’s 

disease (PD). PD is characterized by the loss 

of dopaminergic neurons in the substantia 

nigra, and misfolding of a-synuclein (a-syn) 

into fibrillar aggregates seems to have a 

prominent role in the pathogenesis of this 

disease [96]. Consequently, reduction of the 

intracellular levels of a-syn is a logical 

therapeutic approach, the aim being the 

prevention of misfolding, aggregation, and 

toxicity [97]. NbSyn2 is an Nb directed 

against the C-terminal part of monomeric a-

syn, but the Nb could not prevent 

aggregation because it bound both 

monomeric and aggregated protein [98, 99]. 

Nevertheless, those Nbs provide information 

about possible conformational 

rearrangements during fibrillar maturation 

and, therefore, are valuable for gaining 

knowledge about the structure of a-syn. 
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