RESEARCH ARTICLE QUALITATIVE AND QUANTITATIVE ESTIMATION OF *EUPHORBIA THYMIFOLIA* LINN

Brijesh Sirohi*, Vishnu Raj, Amit Pandey

Radharaman Institute of Pharmaceutical Sciences, Bhopal M.P., India

www.jmpas.com ISSN 2320-7418

Correspondence **Brijesh Sirohi** Radharaman Institute of Pharmaceutical Sciences Fetehpur Dobra, Ratibad, Bhopal-462002, MP, India ⊠ brijeshsirohi.rcp@gmail.com **Keywords** Euphorbia thymifolia Linn. Euphorbiaceae, phytosterol fraction, CNS depressant Received 28/01/2019 Reviewed 03/02/2019 **Revised/ Accepted** 05/02/2019

ABSTRACT

Euphorbia thymifolia linn (euphorbiaceae) it is an annual herb pan-tropic distribution. This is mainly found in waste land and along roadside wall sides under humid condition. Whole plant contains a crystalline alkaloidal principal allied to quercetin, 5,7,4-trihydroxy flavones 7-glucoside and essential oil. The plant is a rich source of phytochemicals like tannin, flavanoid, phytosterol, quercetin through lacking substantial phyto pharmacological studies. *Euphorbia thymifolia* total steroid EETS at dose 75 mg/kg showed a significant increase ($p \ge 0.001$) in sleeping time, depression of locomotor activity duration of tail suspension induced immobility ($p \le 0.01$). Euphorbia thymifolia total phytosterol showed marked CNS depressant and sub-maximal, muscle relaxant activity and anxiolytic effect.

INTRODUCTION

Herbal medicine is still the mainstay of about 75 - 80% of the world population, mainly in the developing countries, for primary health care. This is primarily because of the general belief that herbal drugs are without any side effects besides being cheap and locally available. (Gupta *et al.*, 1998). According to the World Health Organization (WHO), the use of herbal remedies throughout the world exceeds that of the conventional drugs by two to three times.

The use of plants for healing purposes predates human history and forms the origin medicine. of much modern Manv conventional drugs originated from plant sources: a century ago, most of the few effective drugs were plant based. Examples include aspirin (willow bark), digoxin (from foxglove), quinine (from cinchona bark), and morphine. (From the opium poppy) (Vickers et al., 1999). Medical history from the beginning of time is filled with descriptions of persons who used herbs to heal the sick of the society. However, parallel to the onset of the industrial revolution we witnessed the rise of allopathic medicine. Herbal medicine was also an effective healing method, but was viewed less enthusiastically.

Herbal products were discarded from conventional medical use in the mid-20th century, not necessarily because they were ineffective but because they were not as economically profitable as the newer synthetic drugs. In the early 19th century, scientific methods become more advanced and preferred, and the practice of botanical healing was dismissed as quackery. In the 1960s, with concerns over the iatrogenic effects of conventional medicine and desire for more self-reliance, interest in "natural health" and the use of herbal products increased. Recognition of the rising use of herbal medicines and other non-traditional remedies led to the establishment of the office of Alternative Medicine by the National Institute of Health USA, in 1992. Worldwide, herbal medicine received a boost when the WHO encouraged developing countries to use traditional plant medicine to filled needs unmet by modern systems. (Winslow *et al.*, 1998)

Euphorbia thymifolia belong genus euphorbia which has many medicinal uses. The plant is bitter, acrid, sweet, thermo genic, laxative and diuretic. The plant is used from ancient times as antibacterial to treat ringworms, in snakebite, to treat dermatitis, eczema and skin inflammation. The leaves and seeds are given in bowel affection of children and are considered stimulant laxative. Euphorbia thymifolia linn have been reported to exhibit antiviral and antimicrobial activity. the plant is reported to contain quercetin, essential oil, tannin and different phyto sterols there is no substantial work done on the therapeutic potential of the plant so far therefore, the present study has been designed to explore the CNS activity profile of isolated phytosterol fraction.

MATERIALS AND METHODS

Collection of plant material

Herb was collected from, Bhopal (M.P.). The plant was collected in the month of September-October 2008. It was made completely clean, dust free and allowed to get dried under the shade.

Authentication of plant

Plant was identified and authenticated by Dr. Tariq Husain, Scientist and Head Herbarium and Angiosperm Taxonomy, National Botanical Research Institute. Lucknow (India) and a specimen voucher no. 97313 was assigned.

Drying and size reduction of plant material

The plant material was dried under shade. It was pulverised to coarse powder with the help of hand grinder. The coarse powder was packed into airtight container and stored in cool and dry place. This material was used for the further study.

Preparation of crude extract

250 gram of plant material was extracted with petroleum ether by hot maceration process for 24 hrs. The marc was pressed and filtered. The solvent was concentration under reduced pressure using rotator evaporator and dried below 4^oC. The extract was dark green in colour and having characteristic odour.

Extraction of plant by different solvents.

300 gram of crude *Euphorbia thymifolia* was extracted with different – solvent e.g. 90% ethanol, 70% hydro-alcohol, chloroform, benzene and hexane) by hot maceration. Filtered and dried, then salkowski and Lieberman burchard test was carried out on the extract- before and after hydrolysis with filter to explore the nature of non-polar component on steroid or triterpenoid.

This was designated as *Euphorbia thymifolia* total sterol (ETTS) and used further for invivo studies. Phytochemical test on ETTS showed positive result for the presence of

steroid in Lieberman-burchard test and salkowski test and absence of saponins and alkaloid.

Separation of Phytosterol

Dried aerial part of plant \downarrow hot maceration Extracted with pet. Ether \downarrow filter Extracted lipid (filtrate) \downarrow volume reduction Extracted lipid refluxed with 5% alcoholic KOH for 4 hr. \downarrow filter Filtrate extracted with Di-ethyl ether \downarrow Di-ethyl ether layer Dried and yield calculated \downarrow Positive test for steroid Separated total phytosterol

Preparation of extract dosage form

Dosage form was made in 5% Tween 80. 1 gram of extract was taken in the motor and pestle and triturated with 10 ml of 5% of Tween 80 continuously to get homogenous suspension being concentration of 100 mg/ml with final drug concentration of tween 80, 50µl. Suspension was stored in airtight bottles in a cool place. Suspension of extract was administered by intraperitoneal route. All the standard drug solution was made in water for injection. (Kunanusorn *et al.*, 2009)

Animals

Male and female breed albino mice weighing between 25-35 gram and breed albino rat weighing between 150-200 gram are used in the experiments. The animals were placed randomly and allocated treatment group. All the experiments were performed between 9:30 to 16:30 hours to overcome diurnal and circadian variations. All the animals were housed at a temperature of $24\pm2^{\circ}C$ and in a relative humidity of 65±5%. A 12:12 light day cycle was followed. All the animals were housed in polypropylene cages with paddy husk as bedding with free access to water and fed with standard commercial Pelleted chow (Hindustan Lever). All the experimental procedures and protocols used in this study were reviewed by institutional animal ethics committee of Radharaman College of Pharmacy proposal number IAEC/RCP/2017 and were in accordance with the guidelines of the IAEC.

Acute toxicity studies (LD50)

The acute toxicity studies were performed for Lavandula stoechas and Dactylorhiza hatagirea total extract using Swiss albino mice. The animals were fasted for 12 hour experiment and were prior to the administered intraperitoneal with different dose of extract dissolved in 5% Tween 80 (doses range from 50-1000 mg/kg⁻¹ at various dose levels) and observed for mortality up to 48 h (Short term toxicity). Based on the shortterm toxicity, the dose of next animal was determined as per OECD guideline 425. All the animals were also observed for long-term toxicity (14 days) (Diener et al., 1995; OECD, 2000).

2072

OBSERVATIONS

Tabale:-1 Petroleum ether extract was dissolved in CHCL ₃	and tested for tannin and
flavonoid.	

S.no.	TEST	OBSERVATION	INFERENCE
01	TANNINS		
А	Fecl ₃	No bluish black colored	-ve
В	Lead	No yellow ppt.	-ve
02	FLAVONOIDS		
А	Alkaline	No yellow colored formed	-ve
В	Lead acetate	No white ppt.	-ve
С	Zinc hydrochloride	No red colour	-ve

Tabale:-2 Qualitative analysis of *Euphorbia thymifolia* petroleum ether extract for presence of different phytoconstituents.

S.NO.	TEST OBSERVATION		INFERENCE
01	ALKALOIDS		
А	Mayer's reagent	No cream colour ppt.	-ve
В	Dragendroff,s reagent	No reddish brown ppt.	-ve
С	Wagner,s reagent	No reddish brown ppt.	-ve
D	Hager,s reagent	No yellow ppt.	-ve
02	GLYCOSIDE		
А	General test	No red ppt. Was found in test A and B	-ve

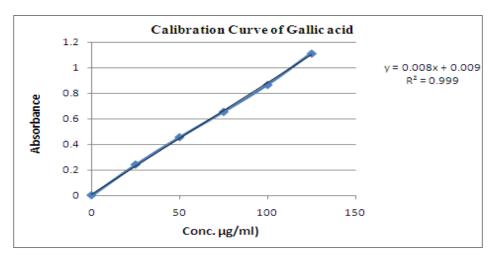
03	STEROID		
Α	Liebermann	Upper layer forms green and small reddish	Steroid
		brown colour on lower layer	(++++)
В	Salkowski	Upper layer green	Steroid
			(++++)
04	CARBOHYDRATE		
Α	Molisch test	Upper layer green & lower layer dark	-ve
	Before hydrolysis	reddish colour +lower layer dark green	
	After hydrolysis		
В	Barfoed test	Upper layer dark green + upper dark green	
	Before hydrolysis	and lower light green	
	After hydrolysis		
05	TANNIS AND		
	PHENOLICS		
А	Ferric chloride test	Upper layer green	Steroid
	Before hydrolysis		(++++)
	After hydrolysis		
В	Gelatin test	No ppt. + Upper layer green and lower layer	Steroid
		reddish brown	(++++)
06	SAPONIN		
А	Forth formation test	Lower layer hazy brown	-ve

Tabale:-3 Solubility Profile of EETS in different solvent

S.no.	Solvent	Solubility
1	Chloroform	++++
2	Di- ethyl ether	-
3	Acetic acid	-
4	Methanol	-
5	Alcohol	-
6	Acetone	-
7	Benzene	-

8	Glycerol	-
9	Tween 80	++++
10	PEG	+
11	Dimethyl	+
	sulfoxide	
12	80% methanol	-
	water	
13	Ethyl acetate	-

Tabale:-4 Phytochemical Sreening of separated EETS.

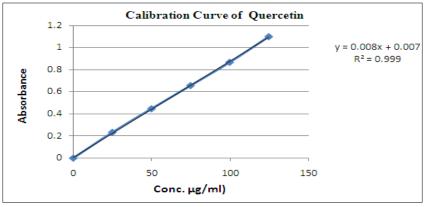

S.no.	TEST	OBSERVATION	INFERENCES
1	Liebermann burchard	Lower layer dark red colour	++++(steroid)
2	Salkowski	Lower layer dark red colour	++++(steroid)
3	Saponin	No dark red colour in lower layer	-ve
4	alkaloid	No dark red colour in lower layer	-ve

Extract		70% hydro alcoholic	90% ethanolic	Benzene	Petroleum ether	Hexane
Before Hydrolysis		Light brick brown colour,(no	Light brick brown colour with	Dark green colour in lower layer	Dark bluish green ppt.	Upper layer light green (dark brown
Liebermann Burchard	Observation	layer separation)	small ppt.			oily) sediment.
	Inference	++	++	++++ (Steroid)	++++ (Steroid)	+++ (Steroid)
Salkowski	Observation	Light brown colour with light brown ppt.	Dark brick brown colour	Very dark green colour .(No layer separation)	Green colour in both layer (lower layer dark green colour)	Upper light yellowish green layer and dark brown oily sediment
	Inference	+++ (Steroid)	++++ (Steroid)	++++ (Steroid)	++++ (Steroid)	+++ (Steroid)
After Hydrolysis	Observation	Dark brick brownish colour on upper layer.	Dark brick brown colour, opaque	Dark bluish green colour,(no layer separation)	Dark brownish black ppt.	Upper layer light yellowish lower layer brown.
Liebermann Burchard	Inference	+++ (Steroid)	+++ (Steroid)	+++ (Steroid)	+++ (Steroid)	++++ (Steroid)
Salkowski	Observation	Very dark brown colour (no layer separation opaque)	Dark brown opaque colour.(no layer separation/o paque)	Dark blackish brown with bluish tint. (opaque, no layer separation)	Upper layer bright green,(lower layer golden yellow)	Upper layer light yellowish lower layer brown.
	Inference	+++ (Steroid)	+++ (Steroid)	++++ (Steroid)	++ (Steroid)	+ (Steroid)

Tabale:-5 Test on different-solvent extract of *euphorbia thymifolia* to explore the nature of steroidal phytochemicals present.

Table:-6 Preparation of Calibration curve of Gallic acid

S. No.	Concentration (µg/ml)	Absorbance (Mean) λmax=760 nm
0	0	0
1	25	0.740
2	50	0.855
3	75	0.954
4	100	1.050
5	125	1.151
	Extract	0.069

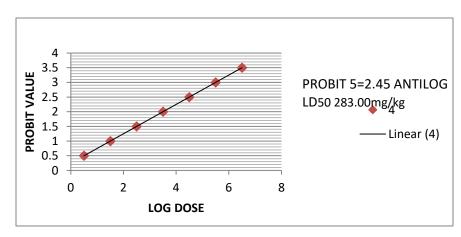


Total flavonoid content estimation:

Tabale:-7 Preparation of calibration curve of Quercetin

S.no.	Concentration (µg/ml)	Absorbance (Mean) λmax=420 nm
0	0	0
1	25	0.234
2	50	0.448
3	75	0.658
4	100	0.869
5	125	1.102
	Extract	1.328

Figure:-2 Calibration curve of Quercetin


Phytoconstitutes	Values
Total polyphenol	0.676
Total flavonoid	4.201
Tannin	3.436

Tabale:-8 Quantitative estimation of phytoconstitutes

Tabale:-9 Ld50 determination of Euphorbia thymifolia steroidal fraction (log dose-probit)

Dose (mg/kg)	Log dose	% mortality	Correct% mortality	Probit value
1000	3	100	95	6.64
750	2.87	60	60	5.25
500	2.69	40	40	4.75
150	2.17	20	20	4.16
50	1.69	0	0	5.00

Figure 3- Graphical representation of log dose vs probit – value of *Euphorbia thymifolia* steroidal fraction.

EXPERIMENTAL RESULT

Qualitative analysis of *Euphorbia thymifolia* petroleum extract.

The percentage yield of petroleum ether extract was 2.5 % (6.4 gram). The petroleum ether extract of *Euphorbia thymifolia* shows the presence of steroid, tannins and phenolic compound. The alkaloid, glycoside, carbohydrate and saponins were absent. The results are shown in -1 the petroleum ether extract was fractionated in CHCL₃ and tested for tannins, flavonoids. The tannin and

flavonoids were absent in CHCL₃ fraction as shown in table:- 2 The different solvent extract of *Euphorbia thymifolia* like 70% hydro alcoholic, 90% ethanolic, CHCL₃, benzene, petroleum ether and hexane were tested for the presence of steroidal Phytoconstitutes. All the extract before hydrolysis and after hydrolysis showed in table:-3 the separated *Euphorbia thymifolia* total sterol was subjected to test for the presence of different Phytoconstitutes viz. Steroid, saponins and alkaloid. The EETS gave positive result for only steroid. The result are shown in table:- 4. It confirms that the separated EETS has only steroid.

Quantative estimation of phytoconstitutes

The petroleum ether extract of *Euphorbia thymifolia* was explored for the quantitative estimation of total polyphenol, total flavonoid and tannins. The value of phytoconstituents were 0.676 mg/kg, 4.201 mg/kg and 3.436 mg/kg respectively for total polyphenol, total flavonoid and tannins as shown in table:-2

Acute toxicity study

Based on the OECD guidelines a limit test was performed to categorize the toxicity class (LD₅₀) of the compound. The limit test was performed at 500 mg/kg (I.P.), which showed mortality (40%). A main test was performed to determine the extract LD₅₀ value following OECD up and down method. LD₅₀ was calculated as 283.00 mg/kg from graphical presentation in figure. A dose range of 25, 50 and 75 mg/kg was selected for the evaluation of pharmacological activities as shown in table:-6

DISCUSSION

This study was conducted in the present Euphorbia thymifolia extract prepared in different solvents depending on polarity *Euphorbia thymifolia* was tested for the presence of different phytoconstituents. The plant was found to be rich in steroidal content so the extraction of total sterol was carried out. The steroids are the centrally active class of phytoconstituents which are responsible for many pharmacological activities. Acute toxicity study was carried out on the total steroid extract of *Euphorbia thymifolia*. The estimated LD_{50} of Euphorbia thymifolia total steroid was 283 mg/kg indicating its moderately toxic properties. A dose range of 25, 50 and 75 mg/kg was selected for EETS to evaluated the pharmacological activity profile which ranges from 1/15th to 1/5th of LD_{50} .

Phytochemical analysis of Euphorbia thymifolia revealed the presence of alkaloid, saponins, flavonoids, triterpenes, tannins and steroids. Euphorbia thymifolia has rich presence of phytosterol with a yield of 10% Antioxidant, (1.00gram). antiviral. antifungal, diuretics, laxative, anti-diarrhoeal activities in are reported Euphorbia thymifolia.

REFERENCES

- Abraham, M.H., Chadha, H.S. and Mitchell, R.C. 1994. Hydrogen bonding.
 33. Factors that influence the distribution of solutes between blood and brain. J *Pharm Sci.* 83.1257-1268.
- Angioni A, Barra A, Coroneo V, dessi S, cabras P, 2006. Chemical Composition, Seasonal Variability, and Antifungal Activity of *Lavandula stoechas* L. ssp. stoechas Essential Oils from Stem/ Leaves and Flowers. J. Agric. Food Chem. 54. 4364-4370.
- Kulkarni SK, Hand book of experimental pharmacology. 3rd ed. Delhi. Vallabh Prakashan. pp. 122-137.
- Kirtikar K R, Basu BD, 2006. Indian medicinal Plants. 2nd ed. Deharadun: International book Distributors. pp. 2199-2201.

- Kokate CK, Purohit AP, Gokhle SB 2007. *Pharmacognosy*. 39th ed. Pune: Nirali Prakhasan. pp. 10-11.
- Kane SR, Mohite SK, Adnaik RS Magdum CS, 2009. "Laxative activity of aqueous extract of *Euphorbia thymifolia* linn," J. Herb. Med. Toxicol., 3(1), 139-140.
- Lin CC, Cheng HY, Yang CM, Lin TC, 2002. "Antioxident and antiviral activites of *Euphorbia thymifolia* linn." J. Biomed. Sci., 9, 656-664.
- Nadkarni KM, 2007. Indian material medica, 2nded. Bombay, India: Popular Prakashan.
- Kirtikar KR, Basu. B.D, 2000. Indian medicinal plants, dehradun, India: International Book Distributors.
- Pal SN, Dandiya P C, 1993. Comparative study of Imipramine, maprotaline, fluvoxamine, trazodone and alprazolam in some animal models of depression. *Indian journal of pharmacology*. 25. 204-208.
- 11. Sadeque AJ, Wandel C, He H, Shah S, Wood AJ, 2000. Increased drug delivery to the brain by P-glycoprotein inhibition. *Clin Pharmacol Ther*. 68.231-237.
- 12. Saito Y, Wright EM, 1983. Bicarbonate transport across the frog choroid plexus

and its control by cyclic nucleotides. *J Physio.* 336.635-648.

- Salvolainen J, Edwards JE, Morgan, ME, Mc Namara, PJ, Anderson BD, 2002. Effects of a P-glycoprotein inhibitor on brain and plasma concentrations of antihuman immuno deficiency virus drugs administered in combination in rats. *Drug Metab Dispos.* 30.479-482.
- 14. Schlossauer B, Steuer H, 2002. Comparative anatomy, physiology and in vitro models of the blood-brain and blood-retina barrier. *Curr Med Chem.* 2.175-186.
- 15. Schwabe U, 1999. Arzneimittel der besonderen Therapierichtungen (Naturheilmittel) In Arzneiverordnungs-Report. Edited by Schwabe U, Paffrath D. Berlin: Springer. 5. 621-656.
- Siegal T, zylber Katz E, 2002. Strategies for increasing drug delivery to the brain focus on brain lymphoma. *Clin Pharmacokinet.* 41:171-186.
- 17. Sippl W, 2002. Computational approaches for the prediction of bloodbrain barrier permeation. *Curr Med Chem.* 2.212-227.
- Taylor EM, 2002. The impact of efflux transporters in the brain on the development of drugs for CNS disorders. *Clin Pharmacokinet*. 41.81-92.