Journal of Medical Pharmaceutical and Allied Sciences

Journal homepage: www.jmpas.com CODEN: JMPACO

Research article

Analytical method development and validation of related substances by rp-hplc of emtricitabine and tenofovir disoproxil fumarate tablets

Jay Bhatt*, Ujashkumar A Shah, Hirak kumar V Joshi, J K Patel

Faculty of Pharmacy, Nootan Pharmacy College, Sankalchand Patel University, Visnagar, Gujarat, India

ABSTRACT

The developed method was a simple, accurate, precise, specific and robust method for the validation of Emtricitabine and Tenofovir Disoproxil Fumarate Tablets by reverse phase high pressure liquid chromatography. For Emtricitabine and Tenofovir Disoproxil Fumarate Chromatography was performed on Agilent 1200 series, UV and PDA Detector, Waters X-bridge C18 (250 mm x 4.6 mm, 5 µm) by preparing Buffer solution: Dissolve 0.63 g of ammonium formate in 1000 mL of purified water and mix. Adjust to pH of 3.90 +0.05 with diluted formic acid. And used it as mobile phase A. Mobile Phase B: mixture of buffer solution and methanol in the ratio of (20 : 80) % v/v at a flow rate of 1.0 mL/min and at 254 nm wavelength. The retention times of Emtricitabine and Tenofovir Disoproxil Fumarate are approx. 29 min and 70 min. respectively. 5-Fluorocytosinc, Sulfoxide Impurity Isomer 1, Sulfoxide Impurity isomer 2, 5-Fluorouracil analogue, Tenofovir (PMPA) Impurity, Monoester Impurity and Dimer Impurity found linear over the range of LOQ - 150 % of target concentration. Method also found precise by spiking impurities at specification level. Accuracy was demonstrate at LOQ - 150 % level by preparing sample in triplicate for each level and found accurate. Hence, the method could be successfully used for the analysis Impurities in Emtricitabine and Tenofovir Disoproxil Fumarate Tablets.

Keywords: Emtricitabine, Tenofovir Disoproxil Fumarate, HPLC, UV and PDA Detector, Related Substances.

Received - 04-06-2021, Reviewed - 07/07/2021, Revised/ Accepted- 03/09/2021

Correspondence: Jay Bhatt* 🖂 jay.bhatt259.jb@gmail.com

Department of Quality Assurance and Pharmaceutical Chemistry, Sakalchand Patel University, Visnagar, Gujarat, India

INTRODUCTION

In the Era of Sciences and medical, Pharmaceutical industries are playing the vital role worldwide. Now a day's humans are suffering from to many critical diseases however to overcome this pharmaceutical industries are producing innovating new chemical entities. Regulatory bodies like USFDA, TGA, MHRA. WHO etc. have certain guidelines to make qualitative and effective medicines. To fulfill requirement and produce qualitative medicine analytical part also play a vital role and now a day's industries are highly focusing on it ^[1].

Several reasons are available for the development of a new method of analysis, they are

- There may not a suitable method for a particular analyte in the sample matrix.
- Existing may be too erroneous.
- Existing method may not provide adequate sensitivity.
- Existing methods are too expensive and time consuming ^[2].

Antiviral drugs are a class of medication used specifically for treating viral infections rather than bacterial ones. Most antiviral are used for specific viral infections, while a broad-spectrum antiviral is effective against a wide range of viruses. Unlike most antibiotics, antiviral drugs do not destroy their target pathogen; instead they inhibit their development ^[3].

MATERIAL AND METHOD DEVELOPMENT Instruments used

able 1: Instrument Used during Developmen				
Name	Make/Model			
HPLC	Agilent			
Series	1200,1260			
Software	Chromeleon			
Pump	Isocratic			
Column	Waters X-bridge C18			
Column	(250 mm x 4.6 mm, 5 µm)			
Detector	UV Detector PDA Detector			

Reagents used

Ammonium formate (LCMS grade), Formic acid 99% (HPLC grade), Water (Milli Q grade) and Methanol (Gradient grade).

PREPARATION OF SOLUTIONS Preparation of Diluent

Prepare a mixture of purified water and methanol in the ratio of (80:20) % v/v.

Standard preparation

Transfer an accurately weighed quantity about 40 mg of Emtricitabine working standard and 60 mg of Tenofovir Disoproxil Fumarate working standard in to a 200 mL volumetric flask. Add about 150 mL of diluent and sonicate to dissolve. Make volume up to the mark with diluent and mix. Dilute 4.0 mL of this solution to 100.0 mL with diluent and mix. (Concentration 8 μ g/mL of Emtricitabine and 12 μ g/mL of Tenofovir Disoproxil Fumarate)

Proper selection of the method involves certain criteria depends upon the nature of the sample, molecular weight and Solubility. The selected drug for the present study was polar in nature. Polar compounds can be separated by Reverse phase chromatography. Reverse phase chromatographic technique was selected for Initial separations from the knowledge of properties of the compound.

For stationary phase C18 column was chosen and different mobile phases were checked and the most suitable condition was optimized. The objective of this experiment was to optimize the Related Substances method for Emtricitabine and Tenofovir Disoproxil based on the literature survey. So here the trials mentioned describes how the optimization was done.

Selection of wavelength for detection by scanning in uv

The working standard solution of Emtricitabine and Tenofovir Disoproxil Fumarate was scanned in the UV region and spectrum was recorded. Solutions were scanned on spectrophotometer in the UV range of 200-400nm. It was seen that at 280 nm maximum absorbance was found for Emtricitabine and 260 nm for Tenofovir Disoproxil Fumarate. But for common response 254 nm wavelength is choosen. In HPLC, proper peak response was observed using 254 nm. Hence, 254 nm was selected as the wavelength for estimation in HPLC^[4].

Trial – I: Chromatographic system

HPLC system is equipped with a UV- Visible detector.

Mobile phase

Buffer solution

In 1000 mL of purified water dissolve 0.63 g of ammonium formate and mix. Adjust to pH of 3.90 ± 0.05 with diluted formic acid. Filter through 0.45µm membrane filter.

Mobile Phase A

Use buffer solution.

Mobile Phase B

Use Methanol and Buffer solution (50:50) % v/v.

Chromatographic conditions

Flow rate	: 1.0 ml/min
Column	: X-bridge C18 (250 mm x 4.6 mm), 5 μm
Detector wavelength	: 254 nm
Injection volume	: 20 µl
Column temperature	: 25°C
Auto sampler temperature	: 25°C

Run time

: 60 minutes

: Water : Methanol (20:80) % v/v

Diluent

Table 2: Gradient program of Trial I

Table 2: Gradient program of Trial – T						
Time (minutes)	% Mobile phase B					
0	100	0				
50	0	100				
50.1	0	100				
60	100	0				

Trial – I Observation

In this trail the peak of Degradent Impurities i.e Sulfoxide Impurity Isomer 1, Sulfoxide Impurity Isomer 2 and Tenofovir (PMPA) impurities eluted closely hence required more separation. Also Tenofovir peak didn't eluted hence required run for longer run time.

Trial - II Mobile phase

Buffer solution

In 1000 mL of purified water dissolve 0.63 g of ammonium formate and mix. Adjust to pH of 3.90 ± 0.05 with diluted formic acid. Filter through 0.45µm membrane filter.

Mobile Phase A

Use buffer solution.

Mobile Phase B

Use Methanol and Buffer solution (80 : 20) % v/v.

Chromatographic conditions

Flow rate	: 1.0 ml/min
Column	: X-bridge C18 (250 mm x 4.6 mm), 5 µm
Detector wavelength	: 254 nm
Injection volume	: 20 µl
Column temperature	: 25°C
Auto sampler temperature	: 25°C
Run time	: 120 minutes
Diluent	: Water : Methanol (20:80) % v/v

Table 3: Gradient program of Trial – II						
Time (minutes)	% Mobile phase B					
0	100	0				
40	90	10				
50	50	50				
70	10	90				
90	10	90				
120	100	0				

CT 1 1

T 1 1 2 C 1

Trial – II Observation

In this trail the peak of Degradent Impurities i.e Sulfoxide Impurity Isomer 1, Sulfoxide Impurity Isomer required more separation. However Tenofovir (PMPA) impurity is separated. Also Tenofovir peak is eluted at around at 80 minutes.

Trial - III Mobile phase Buffer solution

In 1000 mL of purified water dissolve 0.63 g of ammonium formate and mix. Adjust to pH of 3.90 ± 0.05 with diluted formic acid. Filter through 0.45µm membrane filter.

Mobile Phase A Use buffer solution.

Mobile Phase B Use Methanol and Buffer solution (80 : 20) % v/v.

Journal of medical pharmaceutical and allied sciences, Volume 10 - Issue 5, 1184, September October 2021, Pages - 3656-3665

Chromatographic conditions

Flow rate	: 1.0 ml/min
Column	: X-bridge C18 (250 mm x 4.6 mm), 5 μm
Detector wavelength	: 254 nm
Injection volume	: 20 µl
Column temperature	: 30°C
Auto sampler temperature	: 25°C
Run time	: 100 minutes
Diluent	: Water : Methanol (20:80) % v/v

Table 4: Gradient program of Trial - III Time (minutes) % Mobile phase A % Mobile phase B 100 0 0 15 95 5 40 75 25 80 20 80 85 20 80 90 100 0

Trial – III Observation

100

In this trail the peak of Degradent Impurities i.e Sulfoxide Impurity Isomer 1, Sulfoxide Impurity Isomer 2 is separated. Other degradent impurities are also also well separated. There is no significant interference observed at retention time of analyte as well as at impurities.

100

0

FINAL METHODOLOGY Buffer solution

In 1000 mL of purified water dissolve 0.63 g of ammonium formate and mix. Adjust to pH of 3.90 ± 0.05 with diluted formic acid. Filter through 0.45µm membrane filter.

Mobile Phase A Use buffer solution.

Mobile Phase B

Prepare a mixture of buffer and methanol (20:80) % v/v.

Diluent

Prepare a mixture of methanol and water (30:70) % v/v.

Standard preparation

Transfer an accurately weighed quantity about 40 mg of Emtricitabine working standard and 60 mg of Tenofovir Disoproxil Fumarate working standard in to a 200 mL volumetric flask. Add about 150 mL of diluent and sonicate to dissolve. Make up with diluent and mix. Dilute 4.0 mL of this (stock) solution to 100.0 rnL with diluent and mix. (Concentration 8 µg/mL of Emtricitabine and 12 µg/mL of Tenofovir Disoproxil Fumarate)

Placebo/ Sample preparation

Transfer an accurately weighed quantity of placebo powder/sample equivalent to about 200 mg of Emtricitabine or 300 mg of Tenofovir Disoproxil Fumarate into a 100 mL volumetric flask. Add about 60 mL of diluent and sonicate for 10 minutes with vigorous shaking. Keep the flask on bench top to attain room temperature. Make volume up to the mark with diluent and mix. Filter the solution through Millipore PVDF 0.22 μ m filter; collect the placebo/sample by discarding first 3 mL volume of the filtrate ^[5].

Chromatographic condition	18
Column	: X-bridge C18 (250 mm x 4.6 mm),
	5 µm
Detector	: 254 nm
Flow rate	: 1.0 mL/min
Injection volume	: 10 µl
Column temperature	: 25°C
Vial thermostat temperature	: 25°C

Table 5. Gradient program of final methodology						
Time (minutes)	% Mobile phase B					
0	100	0				
15	95	5				
40	75	25				
80	20	80				
85	20	80				
90	100	0				
100	100	0				

Table 5: Gradient program of final methoddalaw

VALIDATION PARAMETERS

System suitability and precision

System suitability and precision were demonstrated by injecting sensitivity solution and six replicate injections of standard solution prepared as per the test method and chromatographed into HPLC system. The signal to noise ratio of Emtricitabine and Tenofovir Disoproxil peak was evaluated from sensitivity solution. The tailing factor and theoretical plates for Emtricitabine and Tenofovir Disoproxil peak were evaluated from standard solution. The tailing factor and theoretical plates for Emtricitabine and Tenofovir Disoproxil peak were evaluated from standard solution. The precision was evaluated by computing the relative standard deviation for the peak area of these replicate injections ^[6].

Injustion No.	Peak area			
Injection No.	Emtricitabine	Tenofovir Disoproxil		
1	120.564	143.214		
2	122.321	141.234		
3	121.456	145.218		
4	124.369	142.120		
5	118.965	140.365		
6	122.354	142.654		
Average	120.564	143.214		
% RSD	1.5	1.2		

Table 6: System suitability and precision results of % RSD

- The signal to noise ratio of Emtricitabine peak: 116.7
- The signal to noise ratio of Tenofovir Disoproxil peak: 114.9
- Tailing factor for Emtricitabine peak: 1.1
- Theoretical plates for Emtricitabine peak: 190092
- Tailing factor for Tenofovir Disoproxil peak: 1.0
- Theoretical plates for Tenofovir Disoproxil peak: 782665

Acceptance criteria

- 1) The signal to noise ratio for both peak is NLT 10.
- 2) Theoretical plates for both peaks are not less than 10000.
- 3) Tailing factor for both peaks are not more than 2.0.
- 4) % RSD of six replicate standard is not more than 5.0.

Observation

The results obtained meet the system suitability and precision requirement, which indicates that the system is suitable and precise for analysis.

Figure 2: Typical chromatogram of diluent

-	EAN	RESU	

No.	Ret.Time min	Peak Name	Туре	Height mAU	Area mAU*sec	Rel.Area %
1	3.17	n.a.	BMB	0.843	2.956	100.00
Tota	l:				2.956	100.00

No.	Ret.Time	Peak Name	Туре	Height	Noise mAU	S/N Ratio	K'	Area mAU*sec
	min	Emtricitohing	BMB	0.855	0.020	116.7	n.a.	10.175
1	29.08	Emurcitabilie	DIVID	0.000	0.000	1110	0.0	11 406
2	69.58	Tenofovir Disoproxil	BWB	0.841	0.020	114.9	II.d.	11.400

⁵⁰ SYSTEM SUITABILITY RESULT

60

70

80

No.	Ret.Time min	Peak Name	Туре	Plates USP	Tailing USP	Resolution USP	K.	Area mAU*sec
1	29.08	Emtricitabine	BMB	190092	1.05	n.a.	40.55	118.381
2	69.48	Tenofovir Disoproxil	BMB	782665	1.04	139.07	98.26	138.250
Total	2							256.631

40

Figure 3: Typical chromatogram of sensitivity solution

30

-2.0-

10

20

min

100

90

Filter compatibility and saturation study

Table 7: % Impuritie i	n Filter compatibili	y and saturation stud	y (A	, B,	C, I	D)
		,				- ,

Volume of	% Known impurities										
sample Discarded (in mL)	5- Fluoro cytosine	Sulfoxide Impurity Isomer 1	Sulfoxide Impurity Isomer 2	5-Fluoro- uracil analogue	Tenofovir (PMPA) impurity	Dimer Impurity					
Unfiltered	0.21	0.21	0.30	0.21	0.18	0.23					
1	0.21	0.21	0.30	0.21	0.18	0.23					
3	0.21	0.21	0.30	0.21	0.18	0.23					
5	0.21	0.21	0.30	0.21	0.18	0.23					
7	0.21	0.21	0.31	0.21	0.18	0.23					
9	0.21	0.21	0.30	0.21	0.18	0.23					
			В								

Volume of	% Known impurities									
sample Discarded (in mL)	5- Fluoro cytosine	Sulfoxide Impurity Isomer 1	Sulfoxide Impurity Isomer 2	5-Fluoro- uracil analogue	Tenofovir (PMPA) impurity	Dimer Impurity				
1	0.00	0.00	0.00	0.00	0.00	0.00				
3	0.00	0.00	0.00	0.00	0.00	0.00				
5	0.00	0.00	0.00	0.00	0.00	0.00				
7	0.00	0.00	0.01	0.00	0.00	0.00				
9	0.00	0.00	0.00	0.00	0.00	0.00				

			-				
		% Knowr	impurities		% of		
Volume of sample Discarded (in mL)	Emtricita bine Acid		Monoester impurity	Isopropyl impurity	Maximum individual impurities at RRT 2.64	Total Impurities	
Unfiltered	BQL	BQL	0.62	0.13	0.03	2.2	
1	BQL	BQL	0.63	0.13	0.03	2.2	
3	BQL	BQL	0.65	0.13	0.03	2.2	
5	BQL	BQL	0.64	0.13	0.03	2.2	
7	BQL	BQL	0.65	0.13	0.03	2.2	
9	BOL	BOL	0.65	0.13	0.03	2.2	

		% Knowr	% of				
Volume of sample Discarded (in mL)	Emtricita bine Acid Adenine Monoo impurity impur		Monoester impurity	Isopropyl impurity	Maximum individual impurities at RRT 2.64	Total Impurities	
1	BQL	BQL	0.01	0.00	0.00	0.0	
3	BQL	BQL	0.03	0.00	0.00	0.0	
5	BQL	BQL	0.02	0.00	0.00	0.0	
7	BQL	BQL	0.03	0.00	0.00	0.0	
9	BQL	BQL	0.03	0.00	0.00	0.0	

D

Acceptance criteria

The difference between the unfiltered and filtered samples should not differ by more than 0.05 for each individual impurity and 0.1 for total impurities.

Observation

From the established data the Millipore PVDF 0.45 μ m filter proved to be compatible for all discard volume, hence Millipore PVDF 0.45 μ m can be used for the analysis. Based on established data it is recommended that first 5 mL of filtrate will be discarded for the analysis.

LOD and LOQ

Limit of detection and quantification were established for known impurities (i.e., 5- Fluoro cytosine, Sulfoxide Impurity Isomer 1, Sulfoxide Impurity Isomer 2, 5-Fluorouracil analogue, Tenofovir (PMPA) Impurity, Monoester Impurity, Dimer Impurity) and unknown impurities (in terms of Emtricitabine and Tenofovir Disoproxil) based on residual standard deviation and slope of the linearity data.

From the linearity data the limit of detection and quantification were calculated using the following formula.

Limit of detection =	3.3 o / S
Limit of quantification =	$10 \sigma / S$

Where,

 σ = Residual standard deviation of regression line S = Slope of regression line

DOI: 10.22270/jmpas.V1015.1184

Table 8: Estabblished LOD and LOD)
-----------------------------------	---

Name of Impunity	LC	DD	LOQ					
Name of Impurity	μg/ mL	%	μg/ mL	%				
5-Fluorocytosine	0.2042	0.01	0.6126	0.03				
Sulfoxide Impurity Isomer 1	0.2214	0.01	0.6642	0.03				
Sulfoxide Impurity Isomer 2	0.2065	0.01	0.6195	0.03				
5-Fluorouracil analogue	0.2064	0.01	0.6192	0.03				
Tenofovir (PMPA) Impurity	0.2096	0.01	0.6288	0.02				
Monoester Impurity	0.1512	0.01	0.4536	0.02				
Dimer Impurity	0.2994	0.01	0.8982	0.03				
Erntricitabine (For unknown impurities)	0.2287	0.01	0.6861	0.03				
Tenofovir Disoproxil (For unknown impurities)	0.2901	0.01	0.8703	0.03				

Table 9: % RSD and S/N ratio of imp	urites
-------------------------------------	--------

	% Known impurities									
Injection Run No.	5-Fluoro cytosine	Sulfoxide Impurity Isomer 1	Sulfoxide Impurity Isomer 2	5-Fluoro uracil analogue	Tenofovir (PMPA) impurity	Dimer Impurity	Monoester Impurity	Emtri- citabine	Tenofovir	
1	10.225	8.653	8.632	10.235	42.654	6.231	26.321	11.324	10.235	
2	10.695	8.962	8.654	10.654	40.235	6.654	26.954	11.654	10.695	
3	9.965	9.214	8.741	11.214	39.654	6.954	25.354	11.21	10.652	
4	11.625	9.864	9.012	10.698	42.541	6.214	26.417	11.968	10.365	
5	9.564	8.023	8.954	10.654	41.654	6.954	26.954	12.564	11.214	
6	10.654	9.621	8.321	10.541	40.654	6.105	25.654	11.222	10.654	
Average	10.455	9.056	8.719	10.666	41.232	6.519	26.276	11.657	10.636	
% RSD	6.8	7.4	2.9	3.0	3.0	5.9	2.5	4.6	3.2	
S/N Ratio	170	202	105	86	425	79	248	102	110	

Acceptance criteria

- The detector response should be positive for LOD solution and the % RSD at LOQ level for impurities shall not be more than 10.0 %.
- The signal to noise ratio at LOQ concentration shall not be less than 10.

Observation

From the above established data, it can be concluded that the test method shall be capable of detecting and quantifying the impurities, if present in the sample, to the extent that mentioned in table.

Method Precision

Method precision was demonstrated by preparing sample as such and six samples as per the test method, in which the known impurities are spiked at 0.2 % level, representing a single batch. The impurities were quantified for each of these samples. The precision of the method was evaluated by computing the percentage-relative standard deviation for the content of each of known impurities, unknown impurities and total impurities.

Table 10: % content of impurities for as such sample (A, B)

		% Known impurities (In as such sample)								
Sample Name	5- Fluoro cytosine	Sulfoxide Impurity Isomer 1	Sulfoxide Impurity Isomer 2	5-Fluoro uracil analogue	Tenofovir (PMPA) impurity	Adenine Impurity				
As such	BQL	BQL	0.08	BQL	BQL	0.03				
			В							

I .	% Known impurities (In as such sample)				% Maximum	0/ T-4-1
Name	Carbonyl Impurity	Ethyl Impurity-1	Monoester Impurity	Isopropyl Impurity	unknown impurity	impurities
As such	BQL	BQL	0.65	0.13	0.02	0.9

Table 11: % content of impurities for spiked sample (A, B)

A										
		% Known impurities								
Sample Set No.	5-Fluoro cytosine	Sulfoxide Impurity Isomer 1	Sulfoxide Impurity Isomer 2	5-Fluoro uracil analogue	Tenofovir (PMPA) impurity	Dimer Impurity	Adenine Impurity	Lamivudine		
1	0.21	0.22	0.30	0.20	0.20	0.24	0.03	BDL		
2	0.21	0.22	0.29	0.20	0.20	0.23	0.03	BDL		
3	0.21	0.22	0.29	0.20	0.20	0.24	0.03	BDL		
4	0.21	0.22	0.30	0.20	0.20	0.24	0.03	BDL		
5	0.20	0.22	0.29	0.20	0.20	0.24	0.03	BDL		
6	0.21	0.22	0.30	0.20	0.20	0.24	0.03	BDL		
Average	0.21	0.22	0.30	0.20	0.20	0.24	0.03	-		
% RSD	1.9	0.0	1.8	0.0	0.0	1.7	0.0	-		

В								
			9/ of					
Sample Set No.	Carbon yl Impurit y	Ethyl Impurity -1	Ethyl Impurity -2	Monoest er impurity	Isoprop yl impurit y	Emtricit a bine Acid	Maximu m RRT 2.65	% Total impuritie s
1	BQL	BQL	BQL	053	0.13	BDL	0.03	2.2
2	BQL	BQL	BQL	0.54	0.13	BDL	0.03	2.2
3	BQL	BQL	BQL	0.54	0.13	BDL	0.03	2.2
4	BQL	BQL	BQL	0.55	0.13	BDL	0.03	2.2
5	BQL	BQL	BQL	0.56	0.13	BDL	0.03	2.1
6	BQL	BQL	BQL	0.57	0.13	BDL	0.03	2.2
Average	-	-	-	0.55	0.13	-	0.03	2.2
% RSD	-	-	-	2.7	0.0	-	0.0	1.9

Acceptance criteria

Impurity levels	% RSD
0.05% to 0.10 %	Shall not be more than 25.0 %
0.11% to 0.50 %	Shall not be more than 15.0 %
0.51% to 1.0 %	Shall not be more than 10.0 %
More than 1.0 %	Shall not be more than 5.0 %

Observation

As the precision results obtained for the impurities are found to be within the acceptance criteria, this implies that the method is precise for quantification of impurities in Emtricitabine and Tenofovir Disoproxil Fumarate Tablets.

PEAK RESULT

No.	Ret.Time min	Peak Name	Туре	Height mAU	Area mAU*sec	Rel.Area %
Tota	1:				0.000	0.00

Figure 7: Typical chromatogram of precision sample (Impurities spiked at specification level)

Linearity

Table 12: Linearity of impuritiy of all impurities (A, B, C, D, E, F, G)- A

Linearity Level	Concentration of 5-Fluorocytosine in µg/mL	Peak area	RRF	Correlation Coefficient
LOQ	0.6354	12.026	-	
50 %	2.0037	37.583	0.80	
80 %	3.2059	59.949	0.80	
100 %	4.0073	75.181	0.80	0.99998
120 %	4.8088	90.815	0.79	
150 %	6.0110	113.239	0.80	
	Average		0.80	

В						
Linearity Level	Concentration of Sulfoxide Impurity Isomer 1 in µg/mL	Peak area	RRF	Correlation Coefficient		
LOQ	0.6414	10.391	-			
50 %	1.9972	31.730	0.94			
80 %	3.1955	51.053	0.94			
100 %	3.9943	63.760	0.94	0.99997		
120 %	4.7932	77.101	0.93			
150 %	5.9915	96.296	0.93			
	Average		0.94			

Linearity Level	Concentration of 5-Fluorouracil analogue in µg/mL	Peak area	RRF	Correlation Coefficient
LOQ	0.6251	9.525	-	
50 %	2.0320	30.661	0.99	
80 %	3.2513	49.089	0.99	
100 %	4.0641	61.574	0.99	0.99999
120 %	4.8769	73.940	0.99	
150 %	6.0961	92.745	0.99	
	Average		0.99	

D **Concentration of Sulfoxide** Linearity Correlation RRF **Impurity Isomer 2 in** Peak area Level Coefficient μg/mL LOQ 9.393 0.6251 50 % 2.0124 29.796 1.01 3.2198 47.157 1.02 80 % 100 % 4.0248 59.032 1.02 0.99995 4.8298 71.114 120 % 1.02 150 % 6.0372 88.892 1.02 1.02 Average

L						
Linearity Level	Concentration Tenofovir (PMPA) Impurity in µg/mL	Peak area	RRF	Correlation Coefficient		
LOQ	0.5993	11.358	-			
50 %	2.9965	55.844	0.62			
80 %	4.7944	88.042	0.63			
100 %	5.9930	111.317	0.62	0.99997		
120 %	7.1916	133.464	0.62			
150 %	8.9895	166.430	0.62			
	Average		0.62	1		

F							
Linearity Level	Concentration of Monoester Impurity in µg/mL	Peak area	RRF	Correlation Coefficient			
LOQ	0.4742	8.896	-				
50 %	45.0657	851.490	0.61				
80 %	72.1052	1341.920	0.62				
100 %	90.1314	1697.998	0.61	0.99996			
120 %	108.1577	2039.791	0.61				
150 %	135.1972	2560.614	0.61				
	Average		0.61				

G						
Linearity Level	Concentration of Dimer Impurity in µg/mL	Peak area	RRF	Correlation Coefficient		
LOQ	0.8876	7.802	-			
50 %	3.1153	27.699	1.30			
80 %	4.9844	44.322	1.30			
100 %	6.2305	55.234	1.30	1.00000		
120 %	7.4766	66.202	1.30			
150 %	9.3458	82.827	1.30			
	Average		1.30			

Acceptance criteria

The correlation coefficient is NLT 0.980.

Observation The study proves that the response for known impurities (i.e., 5-Fluorocytosine, Sulfoxide Impurity Isomer 1, Sulfoxide Impurity Isomer 2, 5-Fluorouracil analogue, Tenofovir (PMPA) Impurity, Monoester Impurity and Dimer Impurity) peak is linear over the range of LOQ to 150 % of shelf life specification limit.

Accuracy

Table 13: %Recovery of 5-Fluorocytosin (A, B, C, D)- A				
Recovery level	Sample No.	Amount Spiked (mg)	Amount Recovered (mg)	% Recovery
	1		0.0152	97.4
LOOL	2	0.0159	0.0149	95.5
LOQ Level	3		0.0156	100.0
		Average		97.6
		В		
Recovery	Sample	Amount	Amount	%
level	No.	Spiked (mg)	Recovered (mg)	Recovery
	1	0.0502	0.0501	99.8
500/ I1	2		0.0511	101.8
50% Level	3		0.0498	99.2
		100.3		
		С		
Recovery	Sample	Amount	Amount	%
level	No.	Spiked (mg)	Recovered (mg)	Recovery
	1		0.09965	98.9
100% Laval	2	0.1008	0.09546	94.7
100% Level	3		0.09852	97.7
		Average		97.1

			D		
	Recovery	Sample	Amount	Amount	%
	level	No.	Spiked (mg)	Recovered (mg)	Recovery
		1	0.1512	0.1527	101.0
	150% Level	2		0.152	100.5
		3		0.1498	99.1
		Average		100.2	

D

Table 14: %Recovery of Sulfoxide Impurity Isomer 1 (A, B, C, D)

		А			
Recovery	Sample	Amount	Amount	%	
level	No.	Spiked (mg)	Recovered (mg)	Recovery	
	1	0.0149	0.0149	100.0	
LOQ Level	2		0.0151	101.3	
	3		0.0156	104.7	
	Average			102.0	
D					

		D		
Recovery	Sample	Amount	Amount	%
level	No.	Spiked (mg)	Recovered (mg)	Recovery
	1		0.0509	98.2
50% Level	2	0.0503	0.0501	97.6
	3		0.0498	98.2
		99.9		
С				

Recovery	Sample	Amount	Amount	%
level	No.	Spiked (mg)	Recovered (mg)	Recovery
	1	0.1006	0.1001	99.5
1009/ Laval	2		0.1009	100.3
10076 Level	3		0.1024	101.8
		100.5		
D				

Recovery	Sample	Amount	Amount	%
level	No.	Spiked (mg)	Recovered (mg)	Recovery
150% Level	1		0.1527	101.2
	2	0.1509	0.1569	104.0
	3		0.1498	99.3
		101.5		

Table 15: %Recovery of Sulfoxide Impurity Isomer 2 (A, B, C, D)

		А		
Recovery	Sample	Amount	Amount	%
level	No.	Spiked (mg)	Recovered (mg)	Recovery
	1		0.0156	100.0
LOO Laval	2	0.0149	0.0149	95.5
LOQ Level	3	1	0.0152	97.4
		Average		97.6
		В		
Recovery	Sample	Amount	Amount	%
level	No.	Spiked (mg)	Recovered (mg)	Recovery
	1		0.0502	100.0
500/ Laval	2	0.0502	0.0506	100.8
5076 Level	3		0.0521	103.8
	Average		101.5	
С				
Recovery	Sample	Amount	Amount	%

level	No.	Spiked (mg)	Recovered (mg)	Recovery
100% Level	1	0.1004	0.1011	100.7
	2		0.1021	101.7
	3		0.1017	101.3
		101.2		

		D		
Recovery	Sample	Amount	Amount	%
level	No.	Spiked (mg)	Recovered (mg)	Recovery
	1	0.1506	0.1521	101.0
1500/ 1 1	2		0.1535	101.9
150% Level	3		0.1534	101.9
		Average		101.6

Recovery level	Sample No.	Amount Spiked (mg)	Amount Recovered (mg)	% Recovery
	1	0.0150	0.0154	102.7
LOO Loval	2		0.0151	100.7
LOQ Level	3		0.0146	97.3
	Average			100.2

		В		
Recovery level	Sample No.	Amount Spiked (mg)	Amount Recovered (mg)	% Recovery
	1	0.0749	0.0765	102.1
500/ L aval	2		0.0777	103.7
50% Level	3		0.0736	98.3
		Average		101.4
		С		

Recovery	Sample	Amount	Amount	%	
level	No.	Spiked (mg)	Recovered (mg)	Recovery	
100% Level	1		0.1521		
	2	0.1498	0.1492	99.6	
	3		0.1534	102.4	
		101.2			
D					

Recovery	Sample	Amount	Amount	%
level	No. Spiked (mg)		Recovered (mg)	Recovery
150% Level	1	0.2247	0.2256	100.4
	2		0.2269	101.0
	3		0.2284	101.6
		101.0		

Table 17: %Recovery of Monoester Impurity (A, B, C, D)

Recovery	Sample	Amount Amount		%			
level	No.	Spiked (mg) Recovered (mg		Recovery			
	1		0.0141	104.4			
LOO Laval	2	0.0135	0.0138	102.2			
LOQ Level	3		0.0132	97.8			
		Average		101.5			
	В						
Recovery	Sample	Amount	Amount	%			
level	No.	Spiked (mg)	Recovered (mg)	Recovery			
	1		1.1295	100.1			
500/ I1	2	1.1280	1.2564	111.4			
50% Level	3		1.2065	107.0			
		106.2					
Recovery	Sample	%					
level	No.	Spiked (mg) Recovered (mg)		Recovery			
	1		2.2854	101.3			
1000/ L1	2	2.2560	2.2654	100.4			
100% Level	3 2.2965			101.8			
		101.2					
		D					
Recovery	Sample Amount Amount		%				
	Sample						
level	No.	Spiked (mg)	Recovered (mg)	Recovery			
level	<u>No.</u>	Spiked (mg)	Recovered (mg) 3.3965	Recovery 100.4			
level	No. 1 2	Spiked (mg) 3.3840	Recovered (mg) 3.3965 3.2541	Recovery 100.4 96.2			
level	No. 1 2 3	Spiked (mg) 3.3840	Recovered (mg) 3.3965 3.2541 3.6521	Recovery 100.4 96.2 107.9			

Table 18: %Recovery of Dimer Impurity (A, B, C, D)

A						
Recovery	Sample	Amount	AmountAmountSpiked (mg)Recovered (mg)			
level	No.	Spiked (mg)				
	1		0.0232	97.1		
LOO Laval	2	0.0239	0.0245	102.5		
LOQ Level	3		0.0262	109.6		
		106.1				
		В				
Recovery	Sample	Amount	Amount	%		
level	No.	Spiked (mg)	Recovered (mg)	Recovery		
	1		0.0785	102.2		
500/ Laval	2	0.0768	0.0796	103.6		
30% Level	3		0.0724	94.3		
		100.0				
		С				
Recovery	Sample	Sample Amount Amount		%		
level	No.	Spiked (mg)	Recovered (mg)	Recovery		
	1		0.1596	103.9		
1000/ I1	2	0.1536	0.1621	105.5		
100% Level	3	104.2				
Γ		104.6				
		D				
Recovery	Sample	Amount Amount		%		
level	No.	Spiked (mg)	Recovered (mg)	Recovery		
	1		0.2365	102.6		
1500/ Law-1	2	0.2304	0.2398	104.1		
150% Level	3		0.2347	101.9		
		102.9				

Recovery	Sample	Sample Amount Amount			
level	No.	Spiked (mg)	Recovery		
	1		0.0152	95.6	
LOO Laval	2	0.0159	0.0171	107.5	
LOQ Level	3		0.0165	103.8	
		Average		102.3	
		В			
Recovery	Sample	Amount	Amount	%	
level	No.	Spiked (mg)	Recovered (mg)	Recovery	
	1		0.0496	101.2	
500/ L1	2	0.0490	0.0478	97.6	
50% Level	3		0.0512	104.5	
		101.1			
С					
Recovery	Sample	%			
level	No.	Spiked (mg)	Recovery		
	1		0.0982	100.2	
100% Laval	2	0.0980	0.0962	98.2	
100% Level	3		0.0987	100.7	
		99.7			
D					
Recovery	Sample	Amount Amount		%	
level	No.	Spiked (mg)	Recovered (mg)	Recovery	
	1		0.1496	101.8	
1500/ Laval	2	0.1470	0.1462	99.5	
150% Level	3		0.1421	96.7	
		99.3			

Table 19: %Recovery of 5- Fluorouracil analogue Impurity (A, B, C, D)

Acceptance criteria

Impurity levels	% Recovery
Up to 0.10 %	Between 50.0% to 150.0%
0.11 % to 0.50 %	Between 70.0% to 130.0%
0.51 % to 1.0 %	Between 80.0% to 120.0%
More than 1.0 %	Between 90.0% to 110.0%

Observation

As the recovery results obtained for known impurities [i.e., 5-Fluorocytosine, Sulfoxide Impurity Isomer 1, Sulfoxide Impurity Isomer 2, 5-Fluorouracil analogue, Tenofovir (PMPA) Impurity, Monoester Impurity and Dimer Impurity] were within the acceptable limits of recovery, the study proves that the method is accurate for quantification of impurities in the range of LOQ to 150 % of shelf-life specification level.

Robustness

Conditions

- 1) Column Temperature was changed by \pm 5°C (i.e., 20°C and 30°C).
- 2) Organic phase ratio of mobile phase was changed by ± 2 % absolute. [i.e., Mobile phase A as such and Buffer solution: Methanol (22:78) % v/v for 2 % and [i.e., Mobile phase A as such and Buffer solution: Methanol (18:82) % v/v for + 2 %]
- 3) Flow rate was changed by \pm 10 % (i.e., 0.9 mL / min and 1.1 mL/min).
- 4) Mobile phase buffer pH was changed by ± 0.1 units (i.e., 3.80 and 4.00).

Acceptance criteria

System suitability Criteria are within the limit for each altered condition.

Assessment of Robustness study

Since the system suitability requirement i.e., the signal to noise ratio for both peak is NLT 10, theoretical plates for both peak are NLT 10000, tailing factor for both peak are NMT 2.0 and % RSD of six replicate standard injections for both peak is NMT 5.0% is met for all the above mentioned changed conditions except pH, method is sensitive for change in pH of buffer solution, hence care should be taken while pH measurement it proves that the method is robust.

Table 20: Robustness data of Emtricitabine

Conditions		Tailing	Theoretical	RT
		factor	Plates	(minutes)
Normal condition	1.4	1.0	145467	28.94
Column oven temperature was changed by	1.1	1.0	158408	30.08
-5°C (i.e.20°C)	1.1	1.0	130400	50.08
Column oven temperature was changed by	0.5	1.0	132938	27.82
+ 5°C (i.e.30°C)	0.5	1.0	152750	27.02
Organic phase ratio of mobile phase was				
changed by - 2 % [i.e., Mobile phase A as	2.0	1.0	142494	28.96
such and Buffer solution: Methanol (22:78)	2.0			
% v/v]				
Organic phase ratio of mobile phase was				
changed by + 2 % [i.e., Mobile phase A as	0.9	1.0	149606	28 75
such and Buffer solution: Methanol (18:82)	0.9	1.0	149000	20.75
% v/v]				
Flow rate was changed by - 10 %	0.7	1.1	154174	30.02
(i.e., 0.9 mL/min)	0.7		151171	50.02
Flow rate was changed by + 10 %	1.6	1.1	138112	27.93
(i.e., 1.1 mL/min)	1.0	1.1	150112	21.95
Mobile phase buffer pH was changed by	64	11	133125	28 31
- 0.1(i.e., pH 3.80)	0.1		155125	20.01
Mobile phase buffer pH was changed by	0.6	1.0	136879	28 55
+ 0.1(i.e., pH 4.00)	0.0	1.0	150075	20.00

Table 21: Robustness data of Tenofovir Disoproxil fumarate

1 aoie 21. Robustiless data of 1		Tailing	Theoretical	DT	
Conditions	70 DCD	ranng	Theoretical		
		factor	Plates	(minutes)	
Normal condition	0.6	1.1	659947	69.63	
Column oven temperature was changed by	0.7	1.1	645907	70.29	
-5°C (i.e.20°C)	0.7	1.1	043807	/0.38	
Column oven temperature was changed by	0.2	1.1	667767	69.95	
+ 5°C (i.e.30°C)	0.5	1.1	007702	08.85	
Organic phase ratio of mobile phase was					
changed by - 2 % [i.e., Mobile phase A as	0.0	1.1	647166	70.49	
such and Buffer solution: Methanol (22:78)	0.9				
% v/v]					
Organic phase ratio of mobile phase was					
changed by + 2 % [i.e., Mobile phase A as	0.5	1.1	(51295	(0.52	
such and Buffer solution: Methanol (18:82)	0.5	1.1	031283	08.55	
% v/v]					
Flow rate was changed by - 10 %	0.2	1.1	664274	70.60	
(i.e., 0.9 mL/min)	0.2	1.1	004274	70.00	
Flow rate was changed by + 10 %	0.7	1.1	642257	68 62	
(i.e., 1.1 mL/min)	0.7	1.1	042237	08.02	
Mobile phase buffer pH was changed by -	27	11	646787	69.13	
0.1 (i.e., pH 3.80)	2.7	1.1	010/0/	07.15	
Mobile phase buffer pH was changed by	03	11	672029	69 41	
+ 0.1(i.e., pH 4.00)	0.5		072027	07.41	

REFERENCES

 Tripathi K D, 2001. Essential of Medical Pharmacology, Jaypee brother, New Delhi, 4th edition.

- Satoskar RS, Bhandarkar SD, Ainapure SS, 2003. Pharmacology and Pharmacotherapeutics, Mumbai: Popular prakashan, 16th edition, 861.
- Torchilin VP, 2005. Recent advances in HPLC, International Journal of Pharmaceutics, 4th edition, pp.145-160.
- Y Haribabu, K Nihila, VK Sheeja, MB Akhil 2021. Method development and validation for simultaneous estimation of lamivudine, dolutegravir and tenofovir disoproxil fumarate in bulk and pharmaceutical dosage form using RP-HPLC and its application to in-vitro dissolution study. Jour. of Med. P'ceutical & Allied. Sci. V 10 - I 4, 1165 P- 3202-3207. doi: 10.22270/jmpas.V10I4.1165.
- Sunita Shailajan, Sasikumar Menon, Ashish Singh, Mandar Mhatre, Neelam Sayed, Harshvardhan Joshi, Bhavesh Tiwari, 2019. Estimation of psoralen from herbal formulations containing *Psoralea corylifolia* using the RP-HPLC-DAD method and its application to a pharmacokinetic study, Volume 6 Issue 3, page- 217-223, DOI: 10.4103/0973-8258.104935.
- 6. Saravanan V, Revathi R, Meera N. 2016. Method development and validation for the simultaneous estimation of lycopene and ubidecarenone by rp-hplc in combined pharmaceutical dosage form. Jddt, 6(5):46-1. DOI: 10.22270/jddt.v6i5.1295.

How to cite this article

Jay Bhatt*, Ujashkumar A Shah, Hirak kumar V Joshi, J K Patel, 2021. Analytical method development and validation of related substances by rphplc of emtricitabine and tenofovir disoproxil fumarate tablets. Jour. of Med. P'ceutical & Allied. Sci. V - 10 - I 5, 1184, P-3656-3665. doi: 10.22270/ jmpas.V10I5.1184.