Multivariate UV spectrophotometric quantification of Cilnidipine in bulk drug and pharmaceutical formulations

Department of Pharmaceutical Analysis, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur Tamil Nadu, India

ABSTRACT

The aim of this research work was to develop a simple, accurate, sensitive and validated Ultra Violet (UV) spectrophotometric assay using the multivariate regression method for the analysis of Cilnidipine. This multivariate calibration technique was based on equations constructed using linear regression analysis using the correlation between absorbance and concentration at five selected equidistant wavelengths. Cilnidipine had a maximum absorbance at 240 nm. The findings were statistically analyzed for significance. A linear plot in the concentration range of 3-9 µg/mL, with a regression coefficient of 0.999 was obtained. The % RSD for intra-day and Inter-day precision were 0.4558 and 0.6099, respectively. The assay was determined and found to be 99.1% - 101.67% % w/w.

Keywords: Cilnidipine, Antihypertensive agent, UV spectrophotometry, Multivariate calibration, Assay, ICH guidelines.

Received - 31-12-2021, Accepted- 29-03-2022

Correspondence: Kokilambigai K S* kokilampharm@gmail.com

INTRODUCTION

Cilnidipine is a majorly L-type calcium channel blocker that is used in the ailment of hypertension and other heart related conditions such as stroke and angina. It is often recommended for diabetic patients with these conditions [1]. Clinical and animal tests have proven its efficacy as a Reno protective, cardioprotective and neuroprotective agent. It demonstrates both L-type and N-type Ca\(^{2+}\) channel blocking activity and is hence a dual activity drug in antihypertensive pharmacotherapy. Cilnidipine suppresses the cardiovascular neurohumoral regulation, sympathetic nervous system as well as the renin-angiotensin-aldosterone system [2]. Cilnidipine (Figure 1) is a dihydropyridine compound with an IUPAC nomenclature of 3-(2-methoxyethyl)-5-O-[(E)-3-phenylprop-2-enyl]-2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate, a molecular formula of C\(_{27}\)H\(_{28}\)N\(_2\)O\(_7\) and a molecular weight of 492.5 g/mol [3]. The drug is official in Indian Pharmacopoeia [4]. Literature review showed findings of various UV-Vis Spectrophotometry [5-17] available for its estimation.

The technique being suggested provides a higher confidence in results as it directly evaluates Cilnidipine and has been attested with greater accuracy and precision than a classical UV-Visible assay. This technique is also more cost effective, direct and rapid than other methods, and can be used for bulk drugs as well as various dosage forms. This multivariate standardization method simplifies the individual result and converts it into a “m” value as a reliant variable [18-20].

Within optimized conditions, this analytical technique would provide excellent sensitivity, resolving power, expeditiousness and cost effectiveness for a validated quantification of Cilnidipine. The absorbance of an analyte (X) i.e. Cilnidipine, is scanned at 5 different wavelengths (\(\lambda\) = 236, 238, 240, 242 and 244 nm), the following formula can then be applied for any preferred wavelength.

\[
A_{\lambda} = a X C_x + k_1 \quad \text{(1)}
\]

\[
A_{\lambda 236} = a X C_x + k_2 \quad \text{(2)}
\]

\[
A_{\lambda 240} = c X C_x + k_3 \quad \text{(3)}
\]

\[
A_{\lambda 242} = d X C_x + k_4 \quad \text{(4)}
\]

\[
A_{\lambda 254} = e X C_x + k_5 \quad \text{(5)}
\]

Where \(A_{\lambda}\) is the analyte's absorbance, a, b, c, d, and e being slopes of the analyte's linear regression functions; intercepts are denoted as k1, k2, k3, k4, k5 at the five specified wavelengths, and Cx is the...
The λ max of Cilnidipine was found to be 240 nm with Methanol as the solvent as shown in Figure 2.

Preparation of sample solution

The amount of Cilnidipine present in the tablet formulation was obtained as a gift sample from Ideal Analytical and Research Institute, Pondicherry. The marketed tablet formulation used was Cilaheart-10, Mankind Pharma, India, (Label claim – 10 milligram Cilnidipine), acquired from a local market.

Instrumentation

LAB INDIA 3092 UV-Visible double beam spectrophotometer, Ultra Sonicator Bath, Analytical balance, Micropipette

Analytical method development

Standard stock solution

Cilnidipine standard stock solution was prepared by the dissolution 10 mg of the standard drug in 5 mL of Methanol and then making up to the mark in a 10 mL standard flask with the same solvent. 1mL of this solution was transferred to another 10mL volumetric flask and made up to 10mL with diluent to obtain a 100 µg/mL concentration. From this standard stock solution, several concentrations (3-9 µg/mL) of solution were prepared.

Determination of λ max

The standard stock solution was diluted in methanol to obtain 6 µg/mL. This solution was measured in the Ultra-Violet region from 200 - 400 nm. The λ max was obtained as 240 nm (Figure 2). The linear curve was obtained with a graph plotting the absorbance against the concentration (Table 1). The solutions were scanned across the range surrounding 240 nm i.e., 236, 238, 240, 242, 244 nm to better enhance the correlation and to diminish instrumental oscillations.

Preparation of sample solution

20 tablets of Cilnidipine were accurately weighed and powdered. A weight corresponding to 10 mg was measured into a 10 ml volumetric flask, dissolved and made up to the mark with methanol to obtain 1 mg/mL. This solution was then filtered and used for further analysis.

Method Validation

According to ICH Q2B guidelines this method was validated for sensitivity, precision, accuracy, and linearity.

Linearity

The different concentrations over the range of 3-9µg/mL was prepared from the standard stock solution of Cilnidipine. In order to minimize instrumental fluctuations and to better the correlation, these solutions were scanned over range of wavelength surrounding its absorbance maxima at 236, 238, 240, 242, 244 nm respectively. The absorbances were recorded and the standardizations were obtained by plotting a concentration vs absorbance graph. (Figure 3, Table 1).

<table>
<thead>
<tr>
<th>Concentration (µg/mL)</th>
<th>236 nm</th>
<th>238 nm</th>
<th>240 nm</th>
<th>242 nm</th>
<th>244 nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.239</td>
<td>0.246</td>
<td>0.252</td>
<td>0.249</td>
<td>0.246</td>
</tr>
<tr>
<td>4.5</td>
<td>0.361</td>
<td>0.372</td>
<td>0.382</td>
<td>0.372</td>
<td>0.370</td>
</tr>
<tr>
<td>6</td>
<td>0.475</td>
<td>0.499</td>
<td>0.505</td>
<td>0.492</td>
<td>0.485</td>
</tr>
<tr>
<td>7.5</td>
<td>0.594</td>
<td>0.621</td>
<td>0.627</td>
<td>0.620</td>
<td>0.611</td>
</tr>
<tr>
<td>9</td>
<td>0.719</td>
<td>0.741</td>
<td>0.761</td>
<td>0.743</td>
<td>0.737</td>
</tr>
</tbody>
</table>

Average of 5 determinations; UV= Ultra violet

By calculating the detection limit and quantification limit using the below formula, the sensitivity of the method was determined.

LOD = 3.3 σ/S ... (8)
LOQ = 10 σ/S.. (9)

Here, σ is the standard deviation (SD) of the lowermost concentration and S is the slope of the standard curve.

Precision

To assess the intra-day and inter-day precision, 6 µg/mL solution was scanned six times in a short interval of time in one day for intraday precision and on six different days for inter-day precision.

Accuracy

Using the standard addition technique, the recovery study for the suggested technique was resolved at 80%, 100%, and 120%. The standard and sample stock solutions were prepared. 0.3 mL of standard was pipetted out into a three standard 10mL volumetric flasks and to it 0.48, 0.3, 0.72 mL of sample solution were added respectively, making up to a capacity of 10 mL with Methanol. These solutions were measured with a UV spectrophotometer, and the percentage recovery was calculated.

Assay

The amount of Cilnidipine present in the tablet formulation was calculated by measuring the absorbance of the extracted tablet solution at 240 nm.

RESULTS AND DISCUSSION

The λ max of Cilnidipine was found to be 240 nm with Methanol as the solvent as shown in Figure 2.
The technique is linear within the assigned concentration range of 3-9 µg/mL. The linear regression analysis shows good linear relationship with $R^2=0.9997$ - 0.9999 for all the calibration plots. For precision, the % relative standard deviation was found to be 0.4558 and 0.6099. The LOD and LOQ obtained are 0.1436 µg/mL and 0.4352 µg/mL respectively. Therefore, the values were found to fall according to ICH guideline limits of validation parameters.

Linearity

The linearity was recorded at 236, 238, 240, 242 and 244 nm in the concentration range of 3-9 µg/mL and depicted in Figure 3 and corresponding calibration curves and residual plots are presented in Figures 4 to 8 & 9-13 respectively. For each of the wavelengths, the low values of % relative standard deviation show that the technique is accurate and precise. The LOD and LOQ were calculated and reported in Table 2.
Table 2: Linearity data with LOD and LOQ at selected five wavelengths

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
<th>Regression equation</th>
<th>R^2</th>
<th>LOD (µg/mL)</th>
<th>LOQ (µg/mL)</th>
<th>% RSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>236</td>
<td>$y = 0.0795x + 0.0004$</td>
<td>0.9998</td>
<td>0.1319</td>
<td>0.3997</td>
<td>0.6654</td>
</tr>
<tr>
<td>238</td>
<td>$y = 0.0926x + 0.0002$</td>
<td>0.9999</td>
<td>0.1098</td>
<td>0.3330</td>
<td>0.5548</td>
</tr>
<tr>
<td>240</td>
<td>$y = 0.0842x + 0.0002$</td>
<td>0.9997</td>
<td>0.1436</td>
<td>0.4352</td>
<td>0.7251</td>
</tr>
<tr>
<td>242</td>
<td>$y = 0.0824x + 0.0008$</td>
<td>0.9999</td>
<td>0.0840</td>
<td>0.2545</td>
<td>0.4235</td>
</tr>
<tr>
<td>244</td>
<td>$y = 0.0815x + 0.0006$</td>
<td>0.9997</td>
<td>0.1439</td>
<td>0.4361</td>
<td>0.7256</td>
</tr>
</tbody>
</table>

nm = Nanometer; µg/mL = Microgram per millilitre

Precision

The low values of standard deviation indicate that this technique is specific and % RSD for the intra-day and inter-day precision were found to be 0.4558 and 0.6099 respectively. It lies within the limits of less than 2% at each wavelength. The low percentage value of relative standard deviation reveal that the suggested technique is accurate and precise (Figure 14, 15).

Recovery

As per ICH guidelines, the % recovery of Cilnidipine was found to be from the range of 99.67% - 101.67% w/w. The recovery was between the acceptable range of 97 - 103 % w/w (Figure 16, Table 3).

Figure 14: UV spectra showing intraday precision

Figure 15: UV spectra showing interday precision

Figure 16: UV Spectrum showing accuracy of Cilnidipine
CONCLUSIONS
This novel multivariate technique is evidently more accurate, precise, reproducible, cost effective and more sensitive than classical UV-Visible Spectrophotometry for Cilnidipine assay. This multilinear regression analysis is proven to be desirable for testing standard drug as well as other dosage forms of Cilnidipine. This method is validated using ICH Quality Guidelines and found to be within the set limits of validation. This is a simple working procedure in comparison to expensive and intricate techniques such as HPLC and HPTLC, and hence can be employed for routine analysis of Cilnidipine formulations in bulk drug and pharmaceuticals.

List of symbols/abbreviations
nm = Nanometer
μg/mL = Microgram per millilitre
g/mol = Gram per Mole
ICH = International Conference on Harmonization
UV = Ultraviolet
HPLC = High Performance Liquid Chromatography
HPTLC = High Performance Thin Layer Chromatography

CONFLICTS OF INTEREST
The authors report no conflict of interest in this study.

ACKNOWLEDGMENT
The authors are thankful to the Chancellor of SRM Institute of Science and Technology, and the management of SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur for allowing to carry out the research work within the university laboratory premises.

REFERENCES

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
<th>Amount present (µg/mL)</th>
<th>Amount added (µg/mL)</th>
<th>Absorbance</th>
<th>Amount recovered (µg/mL)</th>
<th>% Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>236</td>
<td>3</td>
<td>1.8</td>
<td>0.385</td>
<td>4.79</td>
<td>99.79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0.486</td>
<td>6.01</td>
<td>100.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.2</td>
<td>0.564</td>
<td>7.19</td>
<td>99.86</td>
</tr>
<tr>
<td>238</td>
<td>3</td>
<td>1.8</td>
<td>0.396</td>
<td>4.79</td>
<td>99.79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0.499</td>
<td>5.99</td>
<td>99.83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.2</td>
<td>0.587</td>
<td>7.18</td>
<td>99.72</td>
</tr>
<tr>
<td>240</td>
<td>3</td>
<td>1.8</td>
<td>0.401</td>
<td>4.81</td>
<td>100.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0.509</td>
<td>6.03</td>
<td>100.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.2</td>
<td>0.592</td>
<td>7.21</td>
<td>100.14</td>
</tr>
<tr>
<td>242</td>
<td>3</td>
<td>1.8</td>
<td>0.397</td>
<td>4.79</td>
<td>99.79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0.501</td>
<td>5.98</td>
<td>99.87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.2</td>
<td>0.588</td>
<td>7.19</td>
<td>99.86</td>
</tr>
<tr>
<td>244</td>
<td>3</td>
<td>1.8</td>
<td>0.386</td>
<td>4.8</td>
<td>100.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0.493</td>
<td>6.1</td>
<td>101.67</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.2</td>
<td>0.574</td>
<td>7.22</td>
<td>100.28</td>
</tr>
</tbody>
</table>

How to cite this article