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ABSTRACT 
 We are all interested in knowing- whether genes and drugs can increase our life-span. As per Bible, Methuselah's lifespan lasted for a total 

of 969 years. Recent research has identified the Methuselah gene, a specific DNA segment that holds the potential to promote robust and healthy aging.  
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This discovery opens new avenues for the development of pharmaceutical interventions aimed at extending human lifespan. Aging, a complex 

process influenced by natural selection, has evolved over time, adapting to factors such as cellular senescence and genetic instability. Research on 

aging has extensively employed invertebrate models like cnidarians, worms, flies, and yeast. Utilizing genetic methodologies with these organisms has 

resulted in the identification of numerous aging genes. Remarkably, there is compelling evidence of evolutionary conservation within longevity 

pathways across diverse species, including mammals. In search of omic study, we would consider data from another set of experiments performed on 

Cnidarians and show that there has a great advanced on the `biology of aging’ in an indirect way. Cnidarians, like Turritopsis dohrnii, showcase 

"ontogeny reversal," reverting to earlier stages, thus achieving biological immortality through repeated rejuvenation after reproduction.  Alternatively, 

compounds like resveratrol and rapamycin, have been identified as having the ability to decelerate aging in model organisms. However, as of now, 

only rapamycin has demonstrated an impact on longevity in experiments on mice. The opportunity to postpone human aging currently exists, whether 

through established groups of tiny molecules or numerous emerging alternatives. In this context, we explore the approaches to convert findings from 

age-related research into pharmaceuticals. 
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INTRODUCTION 
Researchers have identified the Methuselah gene, a specific 

DNA fragment that grants individuals the potential for a robust and 

healthy old age. The methuselah gene mutation in Drosophila 

melanogaster extends lifespan by 35% and enhances stress resistance, 

potentially involving signal transduction pathways [1]. As creatures get 

older, the power of natural selection to influence their traits weakens, 

especially for qualities that matter before they have children. This 

means that harmful traits that only show up late in life don't get 

removed from the gene pool quickly [2]. As a result, the process of 

aging has changed over time by adjusting the characteristics associated 

with staying healthy as one gets older [3]. Additionally, aging has 

evolved by adapting to the factors that cause aging, such as cellular 

senescence or genetic instability. These factors can affect the 

capability of cells to transform into various cell types and their ability 

to regenerate [4]. Cnidarians have genes similar to more complex 

animals, showing how nature and aging are connected in fascinating 

ways. They share certain genomic structural characteristics and 

essential genes with bilaterians, shedding light on the intriguing 

interplay between evolutionary forces and the intricacies of aging and 

development [5-7]. Certain cnidarians display "ontogeny reversal," 

reverting to earlier stages, a phenomenon observed in Turritopsis 

species. The ground breaking research of Pascual-Torner et. al. (2022) 

showed that Turritopsis dohrnii uniquely achieves biological 

immortality by maintaining high rejuvenation capacity in post-

reproduction. Studies also revealed the genomic sequencing of T. 

dohrnii and Turritopsis rubra (a species lacking rejuvenation). 

Comparative gene analysis, including DNA repair genes and aging, 

offers insights into T. dohrnii's extraordinary rejuvenation, 

emphasizing the need for whole-genome sequencing for 

comprehensive understanding [8-11]. 

The exploration of aging's intricacies traces back to Darwin's 

pondering, with initial theories proposing group selection. 

Evolutionary dynamics were shaped by limited life expectancy, largely  

 

due to infectious diseases, childbirth, and malnutrition. Recent 

centuries witnessed unprecedented demographic shifts, with global life 

expectancy surpassing 80. Aging, a primary risk element for prevalent 

diseases, now confronts societies with an aging populace beset by 

chronic ailments. Research on lengthening health span emerges as a 

potential solution, but aligning aging interventions with prevention 

proves challenging. Regulatory hurdles, the gradual nature of aging, 

and unclear efficacy post-disease onset pose complex questions for the 

integration of anti-aging drugs into healthcare strategies.  

In this overview, we briefly address advancements in the exploration 

of immortality-related genes before shifting our focus to small 

molecules influencing aging. Our discussion will delve into the 

detailed examination of the two extensively researched compounds, 

rapamycin and resveratrol. 

Unravelling the Molecular processes of Turritopsis dohrnii's 

Biological Immortality and Rejuvenation: Genomic, 

Transcriptomic, and Functional Insights 
The study delves into the genomic and transcriptomic 

exploration of Turritopsis dohrnii's rejuvenation phenomenon, 

providing insights into endless vitality and challenging established 

aging paradigms. Pascual-Torner et al. (2022) present a comparative 

analysis of entire-genome assemblies between the non-immortal 

species Turritopsis rubra and T. dohrnii. The research uncovers 

genetic variants associated with key functions, including replication, 

telomere maintenance, DNA repair, redox regulation, stem cell 

dynamics, and cell-to-cell communication. During the life cycle 

reversal (LCR) procedure in T. dohrnii, there is a documented 

suppression of polycomb repressive complex 2 objectives and an 

activation of pluripotency-related targets, suggesting the involvement 

of these transcription factors in pluripotency induction. Another study 

focuses on oxidative stress responses and genomic stability in T. 

rubraand T. dohrnii, revealing genetic variations contributing to 

enhanced redox regulation and DNA repair mechanisms in T. dohrnii. 

Additional investigations explore variations in telomeric sequences, 
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shedding light on potential contributions to diminished telomere 

attrition and enhanced cellular adaptability [12-14]. The genetic insights 

into cellular adaptability and regeneration mechanisms highlight gene 

amplifications in T. dohrniiassociated with apoptosis, neural system 

regulation, and microtubule function, providing valuable 

understanding of the species' extraordinary adaptability and 

regeneration capabilities [15-18]. Furthermore, the study on 

transcriptional regulation and epigenetic modifications reveals genetic 

variations affecting chromatin binding modulation and calcium 

binding sites, offering implications for cellular function and aging 

regulation [19-21]. The combined findings contribute significantly to 

unravelling the molecular intricacies underlying Turritopsis dohrnii's 

pursuit of biological immortality and its unique capacity for 

rejuvenation [22-25]. 

Rapamycin: Unravelling a Journey from Easter Island to Aging 

Interventions 
The narrative of rapamycin unfolds from a 1960s Canadian 

scientific expedition to Easter Island, where a soil sample yielded a 

potent activity capable of killing eukaryotic cells. This activity was 

later attributed to the discovery of rapamycin, a small molecule 

produced by bacteria [26]. Since its identification, rapamycin has 

undergone extensive research, with clinical trials investigating its 

applications in various disease conditions. Notably, rapamycin and its 

derivatives, known as rapalogs, have received approval for several 

disease indications despite significant side effects [27, 28]. A major 

breakthrough in the field occurred with the identification of the Target 

of Rapamycin (TOR) kinase, revealing insights into TOR signalling 

and its association with longevity. Reduced TOR signalling, 

particularly TORC1 activity, has been connected to extended lifespan 

in yeast, worms, flies, and mice [29, 30]. In mouse aging studies, 

rapamycin demonstrated remarkable longevity benefits, extending 

lifespan in both males and females [31]. The drug also exhibited 

potential in delaying age-associated pathologies, including 

neurodegenerative diseases and cardiac hypertrophy [32, 33]. However, 

chronic administration raised concerns, as it failed to address certain 

phenotypes and, in some cases, accelerated specific age-related 

conditions. Despite challenges and side effects, rapamycin's potential 

to delayed aging and delay age-related chronic diseases in humans 

remains a promising avenue, demonstrating proof-in-principle for 

interventions in the aging mechanisms. 

Sirtuins, Resveratrol and Small Molecules: Deciphering Longevity 

Pathways in Yeast to Mice 
This passage delves into the intricate world of Sirtuins, a 

class of protein deacetylases, and their implications for longevity 

across various organisms [34]. Beginning with yeast, where Sirtuins, 

particularly Sir2, have been connected to enhanced replicative lifespan 

through mechanisms like suppressing rDNA recombination, the 

narrative extends to worms and flies, exploring controversial findings 

on the impact of Sirtuin orthologs on aging [35]. In mice, the focus shifts 

to SIRT1 and resveratrol, uncovering tissue-specific effects and their 

potential roles in enhancing longevity [36, 37]. The section also delves 

into the controversial nature of resveratrol and Sirtuin Activating 

Compounds (STACs), detailing their in vitro and in vivo effects on 

SIRT1 activity [38-40]. Despite conflicting data on their ability to extend 

mouse lifespan, these small molecules open avenues for clinical 

applications. The passage highlights the complexity of unravelling 

Sirtuin functions, emphasizing the need for further studies to unlock 

the total spectrum of their roles in aging and potential clinical benefits. 

Metformin and Statins: Examining Widely Used Drugs in the 

Aging Context 
This passage delves into the potential anti-aging effects of 

two commonly used drugs: metformin and statins. Metformin, 

traditionally prescribed for type II diabetes, has appeared as a 

candidate for modulating aging, with recent studies showcasing an 

approximately 5% increase in male mouse median and maximum 

lifespan [41]. Given its safety profile in human administration, 

metformin is notably considered a dietary restriction mimetic, 

activating AMP kinase in response to cellular energy deficits [42]. The 

drug's positive impact extends to age-related diseases, lowering the 

risk of heart-related disease and cancer, as suggested by clinical studies 

[43, 44]. The discussion on statins explores their inhibition of HMG-CoA 

reductase, leading to reduced LDL-associated cholesterol levels [45, 46]. 

While simvastatin did not show longevity benefits in the NIA 

Intervention Testing Program, statins have demonstrated protective 

effects against age-related diseases, including dementia and certain 

cancers, in human clinical trials [47]. However, caution is advised due 

to manageable side effects in some patients, inconsistent protective 

effects in clinical studies, and debates about the efficacy of statins for 

cardiovascular disease in individuals over 80. The passage emphasizes 

the need for further studies before conclusively categorizing statins as 

anti-aging drugs. 

CONCLUSION 

In conclusion, the exploration of vitality and aging 

mechanisms has witnessed remarkable strides in recent research. From 

the identification of the Methuselah gene, offering potential for robust 

aging, to the genomic and transcriptomic insights into the biological 

immortality of T. dohrnii, the pursuit of understanding aging has taken 

intriguing directions. The evolutionary dynamics of aging, shaped by 

natural selection and adapting to factors such as cellular aging, have 

been uncovered through diverse models, including invertebrates and 

cnidarians. 

The discussion on small molecules like rapamycin and 

resveratrol has unveiled promising possibilities for extending lifespan, 

with rapamycin demonstrating notable longevity benefits in mouse 

studies. Sirtuins, particularly SIRT1 and SIRT6, have been involved in 
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longevity pathways across species, showcasing the complexity of their 

roles in aging. Additionally, widely used drugs like metformin and 

statins have emerged as potential modulators of aging, with metformin 

showing positive effects on mouse lifespan. 

As the quest to decipher the molecular intricacies of aging 

continues, the integration of findings into pharmaceutical interventions 

becomes a crucial focus. The potential to postpone human aging 

through small molecules or established drugs opens new avenues for 

anti-aging strategies. However, challenges such as regulatory hurdles, 

the gradual nature of aging, and uncertainties post-disease onset pose 

complex questions for the practical implementation of anti-aging drugs 

in healthcare. In this dynamic landscape of aging research, further 

studies are essential to validate and refine the potential interventions. 

The complex interaction between genetic, molecular, and 

environmental factors necessitates a comprehensive understanding to 

develop effective and safe approaches for extending health span. The 

journey from Methuselah to modern genomic exploration signals a 

promising era for aging research, with the potential to transform how 

we perceive and address the challenges of a growing elderly 

demographic. 
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