

Journal of Medical Pharmaceutical and Allied Sciences

Journal homepage: www.jmpas.com CODEN: JMPACOWWW.JMPAS.COM

Research article

Development and evaluation of fluconazole-loaded selenium nanoparticle gel

Khushi Nidhi Saran¹, Deepika Rani^{*2}, Vinit Kumar Sharma¹, Bhupendra Chauhan¹, Sheetal Sharma²

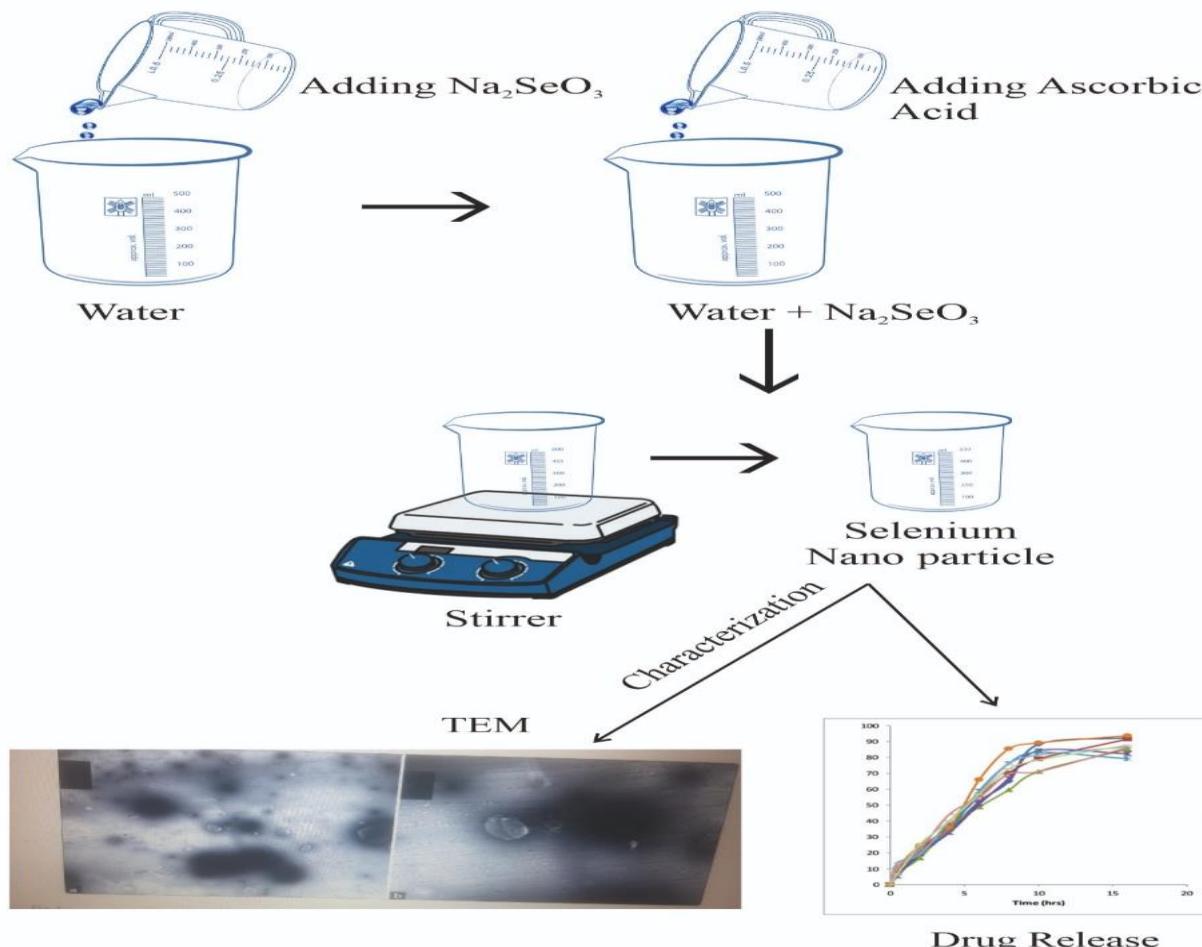
¹AdarshVijendra Institute of Pharmaceutical Sciences, Shobhit University, Saharanpur, Uttar Pradesh, India

²School of Pharmacy and Emerging Sciences, Baddi University of Emerging Science and Technology (BUEST), Baddi, Himachal Pradesh, India

Corresponding author: Deepika Rani, [✉ deepikapharma94@gmail.com](mailto:deepikapharma94@gmail.com), **Orcid Id:** <https://orcid.org/0000-0002-7733-4282>

School of Pharmacy and Emerging Sciences, Baddi University of Emerging Science and Technology (BUEST), Baddi, Himachal Pradesh, India

© The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (<https://creativecommons.org/licenses/by-nc/4.0/>). See <https://jmpas.com/reprints-and-permissions> for full terms and conditions.


Received - 31-01-2025, Revised - 20-04-2025, Accepted - 10-06-2025 (DD-MM-YYYY)

Refer This Article

Khushi Nidhi Saran, Deepika Rani, Vinit Kumar Sharma, Bhupendra Chauhan, Sheetal Sharma, 2025. Revolutionizing antibiotics: breakthroughs in discovery and development. Journal of medical pharmaceutical and allied sciences, V 14 - I 3, Pages - 55 – 62. Doi: <https://doi.org/10.55522/jmpas.V14I3.6838>.

ABSTRACT

The purpose of the current research work was to formulate, optimise, and evaluate fluconazole-loaded selenium nanoparticulate gel for the cure of *Tinea corporis*.

Selenium nanoparticle gel were effectively prepared by chemical reduction method and optimized by 3² factorial design (response surface methodology, design expert version 12) there were two independent variables evaluated on (concentration of sodium selenite and sonication time) and two dependent variables with use particle size and entrapment efficiency. The prepared formulation was assessed in terms of particle size, in vitro drug release, encapsulation efficiency, zeta potential, viscosity and spreadability. Based on response surface methodology, F6 formulation had the highest trapping efficiency with of 92.25%, in-vitro drug release of 76.08% in 8 hrs and mean particle diameter of 62.76 nm. The stability studies revealed that all the formulations were stable as none of them exhibited significant change in drug content over time. The study indicated successful development of fluconazole loaded selenium nanoparticulate gel with improved penetration, good homogeneity, enhancement of duration of action. It can thus be concluded that the developed gel could be an effective treatment for management of skin fungal infection.

Keywords: QbD, Fluconazole, Selenium nanoparticles, Drug release.

INTRODUCTION

Humanity has been plagued by various infectious diseases throughout history, and the ongoing COVID-19 invasive fungal infection is altering cancer [1]. The fungal infection is spread by function and biofilms, which are often resistant to existing treatments and, in fact, are considered to essentially contribute to the high death rates associated with invasive fungal infection [2, 3]. Fluconazole is a representative of the triazole family and one of the most often used antifungal medications [4, 5]. It was ZFDA-approved in 1990 for clinical use in the management of inflammatory diseases like Tinea corporis, peritonitis, and systemic Candida infections, including candidemia, disseminated candidiasis, pneumonia, and cryptococcal meningitis [6]. But the efficiency of fluconazole is compromised due to multidrug resistance [7]. The literature review shows that novel formulations of selenium nanoparticles can effectively prohibit the growth of fungi (Candida, Aspergillus, Tinea, etc.) and are also able to counteract multidrug resistance caused by fungus strikes [8, 9]. Therefore, an attempt was made to formulate fluconazole-loaded selenium nanoparticles, followed by their conversion into gel bases for topical application to the affected area. The topical route of intake is the most non-invasive route of drug intake, as it delivers the medication into the body through the skin, offers the advantage of drug retention, and increases patient compliance by reducing the quantity of dose with high efficacy and safety [10, 11].

MATERIALS AND METHODS

The medication and excipients utilised in the present study, namely fluconazole, sodium selenite Polysorbates, and ascorbic acid, were purchased from Merck Scientific, Roorkee. Tween 80 and carbopol were purchased from Nice Laboratory Reagents, Kochi. All reagents were of the highest analytical grade.

Pre Formulation Study

The active pharmaceutical ingredient (API) was identified by using a UV spectrophotometer in phosphate buffer at pH 7.4 with a Shimadzu-1700 UV-Visible Spectrophotometer [12, 13], in addition to FT-IR analysis [14, 15]. The melting point was calculated by using a DSC.

The solubility and partition coefficient of the medication were measured using the shaking flask method [16].

The drug's compatibility with excipients was evaluated using FTIR analysis. The medication was completely combined with excipients in a 1:1 ratio, and all samples were stored in closed vials at 40 °C and 75% RH for 21 days before being scanned using FTIR. The spectra of pure medication and drug-excipient mixtures were matched to standards to determine any physical or chemical incompatibility [17, 18].

Methods of Preparation of Selenium Nanoparticle

SeNPs were produced using a chemical reduction technique. 30 mg of sodium selenite (Na₂SeO₃.5H₂O) was mixed with 90 mL of water. Ascorbic acid (10 mL, 56.7 mM) was added dropwise to the sodium selenite solution while vigorously stirring. Polysorbates (10 µL) was added after each 2 mL of ascorbic acid. Ascorbic acid led to the formation of selenium nanoparticles. All solutions were prepared in a sterile cabinet with double-distilled water. The mixtures were allowed to react with each other in a concentrated state until the color changed from colorless to bright orange. Selenium nanoparticles were sonicated at different rpm. Soon after the colour change was observed, the mixture was diluted to 25 ml with distilled water [19, 20].

Preparation of Gel

The produced selenium nanoparticle was transformed into a gel by adding 1% Carbopol while stirring continuously at 1500 rpm and characterized using various parameters.

Optimization of Selenium Nanoparticles Formation of Gel by Response Surface Methodology

We developed nine formulations of fluconazole-loaded selenium nanoparticles using a 32-factorial design. Table 1 [21, 22] shows the selection of two independent variables: sodium selenite concentration (X₁) and sonication time (X₂). Two dependent variables were also chosen: particle size (Y₁) and entrapment efficiency (Y₂) [23].

Table 1: Test Factors for Optimization of Process Parameters

Factor	Name	Units	Low Level	Middle Level	High Level
A (X ₁)	Conc. of sodium selenite	µM/L	50	60	70
B (X ₂)	sonication time	Min	20	30	40

Characterization of Selenium Nanoparticle

Particle size analysis by Malvern Mastersizer

Particle size of the selenium nanoparticle was evaluated by Malvern Mastersizer [24].

Surface and Shape Analysis by TEM

The form and surface properties of selenium nanoparticles were analysed using 48 Transmission Electrons (Model H-7500 Hitachi, Japan) [25].

Zeta Potential Analysis

The surface charge of selenium nanoparticles was evaluated by the Malvern zetasizer [26, 27].

Drug Entrapment Efficiency (%)

Dialysis method was used to determine the drug concentration in selenium nanoparticles. 10 ml of nanoparticle dispersion was sonicated for 1 minute and filtered. The filtrate is diluted appropriately and drug content was measured using a UV visible spectrophotometer at 259 nm wavelength [28-29].

The percentage medication trapped efficiency was determined by using the following equation.

$$\text{Entrapment Efficiency} = \frac{\text{observed drug content}}{\text{Initial drug content}} \times 100$$

In-Vitro Drug Release Studies

In-vitro drug release experiments were conducted using Franz diffusion cells and cellophane 18 membranes. To maintain the correct temperature, the assembly was placed on a magnetic stirrer and stirred at 100 rpm [30, 31]. The diffusion cell's receptor compartment was filled with appropriate phosphate buffer (pH 7.4). A selenium nanoparticle with 200 mg of medicine was applied to the egg membrane. To maintain sink conditions, a 1 ml aliquot of the receptor medium was removed at regular intervals and immediately replaced with an equal volume of fresh phosphate buffer (pH 7.4) [32, 33]. The substance underwent spectrophotometric analysis at λ max 259 nm for in-vitro drug release tests.

Characterization of Drug Loaded Selenium Nanoparticle Gel

Physical Appearance

The selenium nanoparticle gel was visually inspected for colour, clarity, homogeneity, and appearance [34].

pH Stability Study

2.5 g of gel was properly weighed and distributed in 25 milliliters of distilled water. The pH of the dispersion was measured using a digital pH monitor [35].

Spreadability

The spreadability of gel compositions was determined using spreadability equipment. The lowest 32 slides contained 1.0 g of gel sample, while the upper slide was placed on top. Spreadability was determined using the following formula [36].

$$S = m \times lt$$

Viscosity

The viscosity of the Selenium nanoparticle gel was measured at 25°C using a Brookfield viscometer [37].

Gel Strength

To measure gel strength, use a plunger with a pan that holds weights at one end and immerses the other end in gel. Gels were placed in a glass container and marked 1cm below the fill point. The weight required for the plunger to sink to a depth of 1 cm in the prepared gel was established for each formulation [38, 39].

Stability Studies

Stability tests were carried out on the optimised formulation, F6. The formulation was kept in an airtight container at $25 \pm 2^\circ\text{C}/60 \pm 5\%$ relative humidity (RH) and $40 \pm 2^\circ\text{C}/75 \pm 5\%$ (RH) for 90–16 days. Samples were analysed for residual drug concentrations at 15, 30, 45, 60, and 90 days [40, 41]. Each formulation had an initial drug content of 100%.

RESULTS AND DISCUSSION

Pre-formulation Studies of Drug

The substance was identified by several procedures, such as melting point, UV-51 spectroscopy, and FTIR spectroscopy. All metrics were within acceptable limits and met official Compendia standards. The drug's UV spectra showed peak absorption at 259 nm. The drug's partition coefficient was found to be 1.01, which falls below the permissible range. The medication was found to be substantially soluble in phosphate buffer, propylene glycol, and methanol but very faintly soluble in filtered water. Physical and chemical incompatibility studies indicate that the API is compatible with all excipients used in formulations.

Optimization of Various Parameters by Full Factorial Design

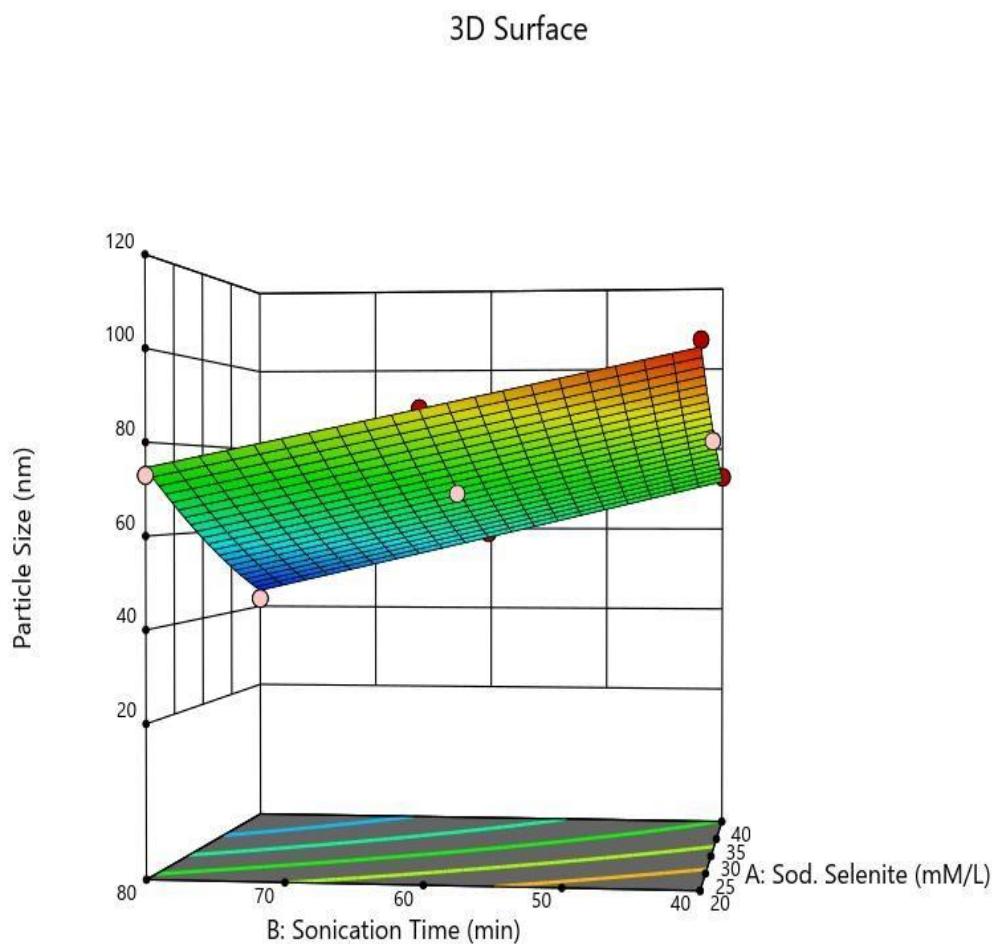
The results obtained after implementing 3^2 Full Factorial design are mentioned below.

The regression equation for cumulative Particle size obtained after calculation of main and interaction effects is represented in given equation and the corresponding 3D surface graph.

$$(Y_1 = 70.22 - 14.50A - 13.17B - 0.7500AB + 2.17A^2 + 0.1667B^2)$$

From the equation and graph it was observed that as the concentration of sodium selenite and sonication time is increased and particle size reduced, hence both the variables negatively affect the particle size.

Y2: Entrapment Efficiency


The regression equation for entrapment efficiency obtained after calculation of main and interaction effects is represented in given equation and the corresponding 3D surface response graph is shown in figure 2.

$$(Y_2 = 80.00 + 10.67A - 0.3333 B - 2.25AB - 1 A^2 - 6 B^2)$$

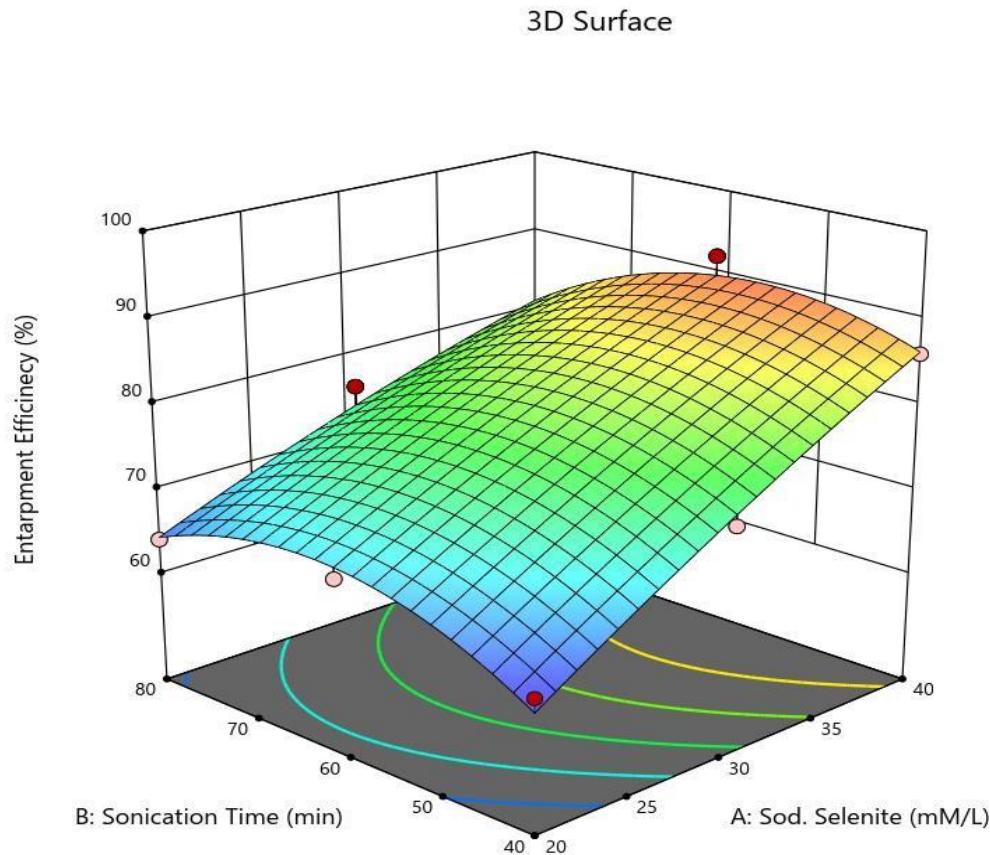

From the equation and 3D surface graph it was observed that as the concentration of sodium selenite was increases, entrapment efficiency is accordingly increased. However sonication affects the entrapment efficiency.

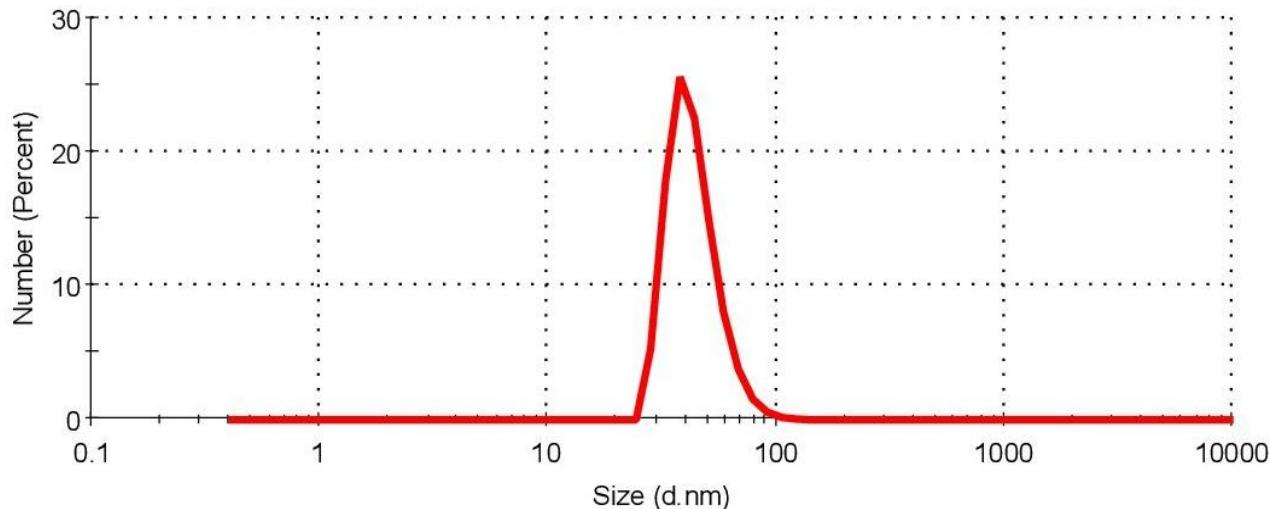
Figure 1: 3D surface plot showing the effect of independent variable on particle size

Factor Coding: Actual
Response: Particle Size (nm)
 Design Points:
 ● Above Surface
 ○ Below Surface
 42 101

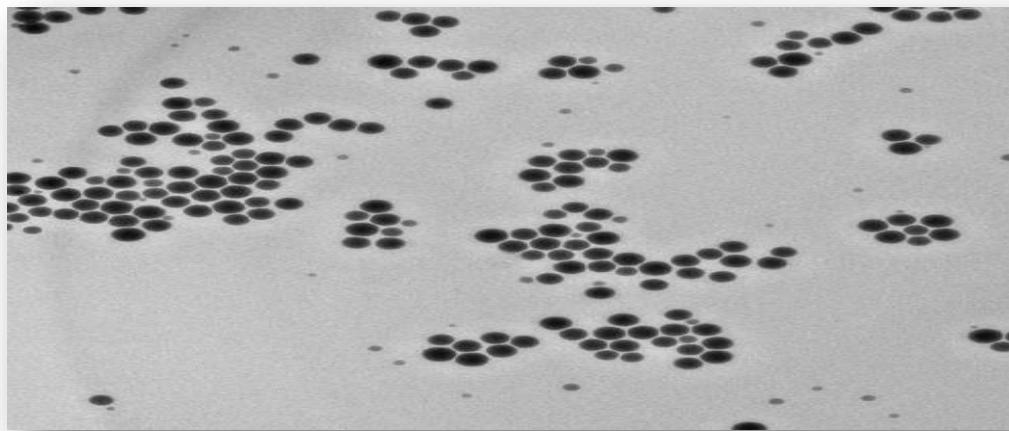
Figure 2: 3D surface plot showing the effect of independent variables on entrapment efficiency

Factor Coding: Actual
Response: Entrapment Efficiency (%)
 Design Points:
 ● Above Surface
 ○ Below Surface
 62 92

Characterization of Selenium Nanoparticle


Particle size analysis by Malvern Mastersizer

Particle size analysis was performed by Malvern Mastersizer and average size of particles were found to be 62.76nm as shown in Figure 3.


Surface analysis and shape by TEM

Surface morphology of the selenium nanoparticle was examined by TEM. Selenium nanoparticle were observed spherical,

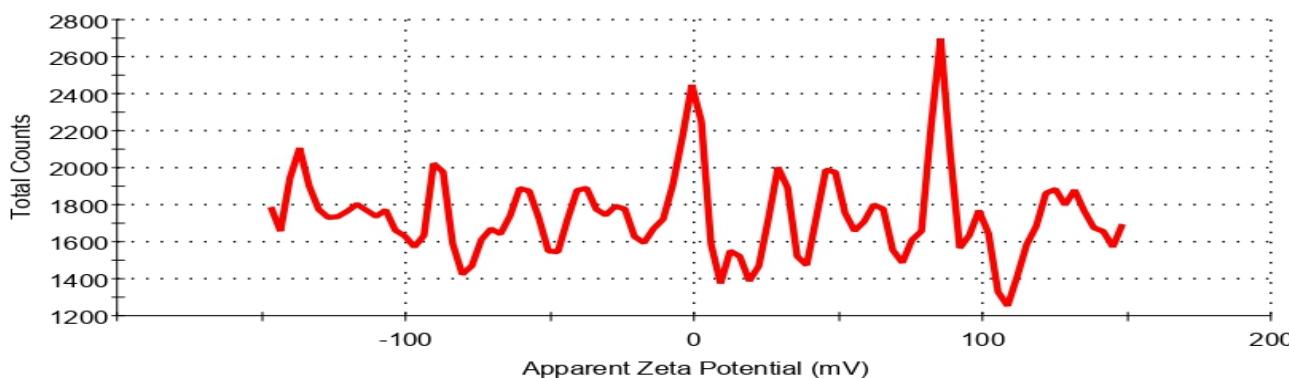
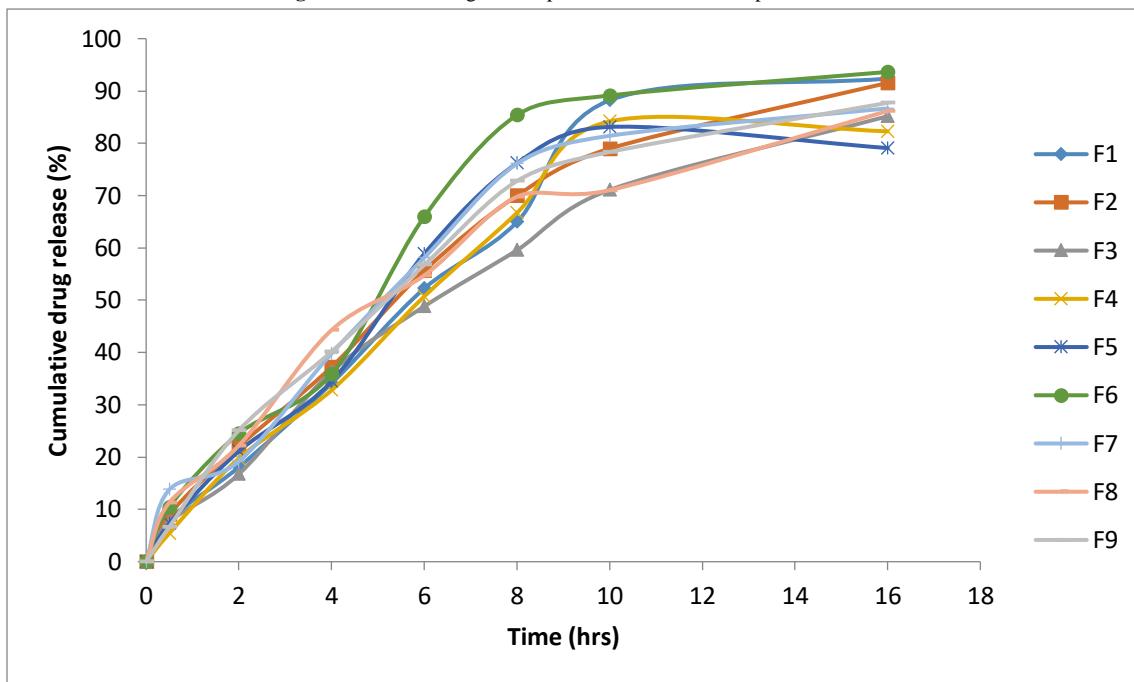

Figure 3: Particle size distribution
Size Distribution by Number

Figure 4: TEM of fluconazole-loaded selenium nanoparticle


Figure 5: Zeta Potential Analysis
Zeta Potential Distribution

smooth, even sized, a small no of irregular selenium nanoparticle had also been observed in pic as shown in Figure 4.

Zeta Potential analysis

Zeta potential analysis was performed by Malvern Zetasizer, and average Zeta potential was reported as -0.628 (mV) as shown in Figure 5.

Figure 6: *In Vitro* drug release profile of selenium nanoparticle

Entrapment Efficiency

Entrapment efficiency of nine formulations (F1-F9) is summarized in Table 2.

Table 2: Entrapment efficiency of selenium Nanoparticle

Batch Code	Entrapment Efficiency (%) \pm S.D.
F1	67.23 \pm 0.59
F2	69.03 \pm 1.12
F3	71.15 \pm 0.89
F4	74.18 \pm 1.19
F5	87.39 \pm 1.34
F6	92.25 \pm 0.17
F7	84.73 \pm 1.15
F8	80.72 \pm 1.90
F9	74.43 \pm 0.43

In-vitro drug release

Drug dissolution study of nine formulations (F1-F9) is summarized in Figure 6.

Characterization of drug loaded selenium nanoparticle gel Appearance

The developed selenium nanoparticle gel was observed as white translucent with a homogeneous and soft texture.

pH Measurement

The pH of the fluconazole-loaded Selenium nanoparticle gel was observed within acceptable ranges, indicating compatibility for skin application.

Spreadability study of gel

The spreadability of drug loaded selenium nanoparticle gel was found to be 18.75 gm cm/sec \pm 0.1 which is in an acceptable range.

Viscosity

The viscosity of selenium nanoparticle gel was found to be 22.01 Pa, 22.10 Pa, and 6.95 Pa.

Stability studies

The stability investigations at 25 ± 2 °C/ $60 \pm 5\%$ RH (room temperature) showed good stability of all formulations, with no notable changes in drug content. At 40 ± 2 °C/ $75 \pm 5\%$ (RH), drug degradation was rapid. Thus, the optimal temperature is ambient temperature

CONCLUSION

The study demonstrated the successful preparation of fluconazole-loaded selenium nanoparticle gels with better penetration, high homogeneity, and an increased duration of action. The prepared selenium nanoparticle gel formulations were examined for particle size, entrapment effectiveness, in-vitro drug release, and zeta potential. According to the results of the response surface methodology, the F6 formulation is the best formulation in terms of entrapment efficiency and in-vitro drug release rate. The findings of the stability studies show that the formulation was stable at room temperature with minimal drug loss. Thus, the proposed gel may be an effective treatment for skin fungal infections. Furthermore, the nanoparticle-loaded gel was evaluated for homogeneity, pH, spreadability, and viscosity.

REFERENCES

1. Bongomin F, Gago S, Oladele RO, et al, 2017. Global and Multi-National Prevalence of Fungal Diseases-Estimate Precision. *Journal of Fungi*. 3(4), Page 57. Doi: 10.3390/jof3040057.
2. Enoch DA, Yang H, Aliyu SH, et al, 2017. The changing epidemiology of invasive fungal infections, Human fungal pathogen identification: methods and protocols. *Methods in Molecular Biology*. Pages 17-65. Doi: https://doi.org/10.1007/978-1-4939-6515-1_2.
3. Houst J, Spizek J, Havlicek V, 2020. Antifungal drugs. *Metabolites*. 10(3), Page 106. Doi: 10.3390/metabolites10030106.

4. Edouarzin E, Horn C, Paudyal A, et al, 2020. Broad-spectrum antifungal activities and mechanism of drimane sesquiterpenoids. *Microbial Cell.* 7(6), Pages 146–159. Doi: 10.15698/mic2020.06.719.
5. Hashem AH, Khalil AMA, Reyad AM, et al, 2021. Biomedical Applications of Mycosynthesized Selenium Nanoparticles Using *Penicillium expansum* ATTC 36200. *Biological Trace Element Research.* 199(10), Pages 3998–4008. Doi: 10.1007/s12011-020-02506-z.
6. Bisht N, Phalswal P, Khanna PK, et al, 2022. Selenium nanoparticle: A review on synthesis and biomedical application. *Materials Advances.* 3, Pages 1415–1431. Doi: <https://doi.org/10.1039/D1MA00639H>.
7. Zhang T, Qi M, Wu Q, et al, 2023. Recent research progress on the synthesis and biological effects of selenium nanoparticles. *Frontiers Nutrition.* 10, Pages 1183487. Doi: <https://doi.org/10.3389/fnut.2023.1183487>.
8. Hua C, Buttgerit F, Combe B, et al, 2020. Glucocorticoids in rheumatoid arthritis: current status and future studies, *Rheumatoid Musculoskeletal Diseases. RMD Open.* 6, Pages 536. Doi: 10.1136/rmdopen-2017-000536.
9. Rane BR, Patil RS, Jain AS, et al, 2021. Formulation development and evaluation of nanogel loaded with montelukast sodium niosomes. *Int. J. Pharm. Sci. Res.* 12(8), Pages 4208–4221. Doi: 10.13040/IJPSR.0975-8232.12(8).4208-21.
10. Yao TC, Huang YW, Chang SM, et al, 2020. Association Between Oral Corticosteroid Bursts and Severe Adverse Events: A Nationwide Population-Based Cohort Study. *Ann Intern Med.* 173(5), Pages 325–330. Doi: 10.7326/M20-0432.
11. Jeong WY, Kwon M, Choi HE, et al, 2021. Recent advances in transdermal drug delivery systems: a review. *Biomater Res.* 25, Page 24. Doi: <https://doi.org/10.1186/s40824-021-00226-6>
12. Kumar S, Kaur R, Sharma KR, et al, 2018. Formulation and Evaluation of Microspheres for Colon Targeted Delivery of Ondansetron. *Int. J. Res. Dev. Pharm. L. Sci.* 7(5), Pages 3083–3091. Doi: [http://dx.doi.org/10.21276/IJRDPL.2278-0238.2018.7 \(5\).3083-3091](http://dx.doi.org/10.21276/IJRDPL.2278-0238.2018.7 (5).3083-3091).
13. Kumar SK, Yagnesh TNS, Design, et al, 2019. Optimization and evaluation of ibuprofen fast dissolving tablets employing starch tartrate: A New superdisintegrant. *J. Drug Delivery Ther.* 9(2), Pages 160–162. Doi: <https://jddtonline.info/index.php/jddt/article/view/2534>.
14. Deshmukh MT, Mohit SK, 2017. Preparation and evaluation of mucoadhesive microsphere of fluoxetine HCl. *Int. J. Pharm. Sci. and Res.* 8(9), Pages 3776–85. Doi: 10.13040/IJPSR.0975-8232.8(9).3776-85
15. Krishna SR, Ramu A, Vidyadhara S, et al, 2020. Preformulation, Formulation Development and Drug Release Studies of Dipyridamole Floating microballoons. *Int. J. Pharm. Sci. and Res.* 11(9), Pages 4637–4647. Doi: 10.13040/IJPSR.0975-8232.11(9).4637-47.
16. Bartelds R, Nematollahi MH, Pols T, et al, 2018. Niosomes, an alternative for liposomal delivery. *Plos one.* 13(4), Pages e0194179. Doi: <https://doi.org/10.1371/journal.pone.0194179>.
17. Durga BG, Veera LP, 2020. Recent advances of non-ionic surfactant-based nano-vesicles (niosomes and proniosomes): a brief review of these in enhancing transdermal delivery of drug. *Futur J Pharm Sci.* 6, Pages 100. Doi: <https://doi.org/10.1186/s43094-020-00117-y>.
18. Ge X, Wei M, He S, et al, 2019. Advances of Non-Ionic Surfactant Vesicles (Niosomes) and Their Application in Drug Delivery. *Pharmaceutics.* 11(2), Pages 55. Doi: 10.3390/pharmaceutics11020055.
19. Yu S, Liu H, Yang R, et al, 2023. Aggregation and stability of selenium nanoparticle: Complex roles of surface coating, electrolytes and natural organic matter. *J Environ Sci.* 130, Pages 14–23. Doi: 10.1016/j.jes.2022.10.025.
20. Shi Z, Pan S, Wang L, et al, 2021. Topical gel based nanoparticles for the controlled release of oleanolic acid: design and in vivo characterization of a cubic liquid crystalline anti-inflammatory drug. *BMC Complement Med Ther.* 21(1), Page 224. Doi: <https://doi.org/10.1186/s12906-021-03399-8>.
21. Serajuddin AT, Thakur AB, Ghoshal RN, et al, 1999. Selection of solid dosage form composition through drug-excipient compatibility testing. *J. Phar. sci.* 88(7), Pages 696–704. Doi: <https://doi.org/10.1021/j3980434g>.
22. Sammour RMF, Taher M, Chatterjee B, et al, 2019. Optimization of Aceclofenac Proniosomes by Using Different Carriers, Part 1: Development and Characterization. *Pharmaceutics.* 11(7), Page 350. Doi: 10.3390/pharmaceutics11070350.
23. Blinov AV, Maglakelidze DG, Brazhko EA, et al, 2022. Optimization of the Technique for Obtaining Selenium Nanoparticles Stabilized with Cocamidopropyl Betaine. *Russ J Gen Chem.* 92(12), Pages 2939–2943. Doi: <https://doi.org/10.1134/S1070363222120489>.
24. Bayindir ZS, Antep MN, Yuksel N, et al, 2015. Development and Characterization of Mixed Niosomes for Oral Delivery Using Candesartan Cilexetil as a Model Poorly Water-Soluble Drug. *AAPS Pharm Sci Tech.* 16(1), Pages 108–117. Doi: 10.1208/s12249-014-0213-9.
25. Abdelhamid AE, Ahmed EH, Awad HM, et al, 2024. Synthesis and cytotoxic activities of selenium nanoparticles incorporated nano-chitosan. *Polym. Bull.* 81, Pages 1421–1437. Doi: <https://doi.org/10.1007/s00289-023-04768-8>.
26. Silva LD, Fu JY, Htar TT, et al, 2019. Characterization, optimization, and in vitro evaluation of Technetium-99m-labeled niosomes. *Int J Nanomedicine.* 14, Pages 1101–1117. Doi: 10.2147/IJN.S184912.
27. Barot T, Rawtani D, Kulkarni P, et al, 2021. Development, characterization and in vitro–in vivo evaluation of Farnesol loaded niosomal gel for applications in oral candidiasis treatment. *Helion.* 7(9), Pages 07968. Doi: <https://doi.org/10.1016/j.heliyon.2021.e07968>.
28. Gong WJ, Masrina MN, Siti FH, et al, 2020. Size, Entrapment Efficiency and Stability of Curcumin Niosomes Prepared at Different pH Conditions. *Asian J of Scie. Res.* 13(1), Pages 23–28. Doi: 10.3923/ajsr.2020.23.28.
29. Rathee J, Kanwar R, Kaushik D, et al, 2020. Niosomes as efficient drug delivery modules for encapsulation of Toll-like

receptor 7 agonists and IDO-inhibitor. *App. Surf. Sci.* Page 144078. Doi: <https://doi.org/10.1016/j.apsusc.2019.144078>.

30. Sadeghi S, Ehsani P, Cohan RA, et al, 2020. Design and Physicochemical Characterization of Lysozyme Loaded Niosomal Formulations as a New Controlled Delivery System. *Pharm. Chem. J.* 53, Pages 921–930. doi: [10.1007/s11094-020-02100-6](https://doi.org/10.1007/s11094-020-02100-6).

31. Zou X, Jiang Z, Haung Z, et al, 2021. Selenium nanoparticle coated with pH responsive silk fibroin complex for fingolimod release and enhanced targeting in thyroid cancer. *Artif cells Nanomed.Biotechnol.* 49(1), Pages 83-95. Doi: [10.1080/21691401.2021.1871620](https://doi.org/10.1080/21691401.2021.1871620).

32. Hou J, Tamura Y, Takahashi Y, et al, 2022. An In Vitro Evaluation of Selenium Nanoparticles on Osteoblastic Differentiation and Antimicrobial Properties against *Porphyromonas gingivalis*. *Nanomat.* 12, Page 1850. Doi: [10.3390/nano12111850](https://doi.org/10.3390/nano12111850).

33. Shi Z, Pan S, Wang L, et al, 2021. Topical gel based nanoparticles for the controlled release of oleanolic acid: design and in vivo characterization of a cubic liquid crystalline anti-inflammatory drug. *BMC Complement Med The.* 21(1), Page 24. DOI: <https://doi.org/10.1186/s12906-021-03399-8>.

34. Bhardwaj S, Bhatia S, 2020. Development and Characterization of Niosomal Gel System using *Lallementia royleana* Benth, Mucilage for the treatment of Rheumatoid Arthritis. *Iran J Pharm Res.* 19(3), Pages 465–482. Doi: [10.22037/ijpr.2020.112887.14003](https://doi.org/10.22037/ijpr.2020.112887.14003).

35. Abdelmonem R, Elhabal SF, Abdelmalak NS, et al, 2021. Formulation and Characterization of Acetazolamide Carvedilol Niosomal Gel for Glaucoma Treatment: In Vitro, and In Vivo Study. *Pharmaceutics.* 13, Page 221. Doi: [10.22037/ijpr.2020.112887.14003](https://doi.org/10.22037/ijpr.2020.112887.14003).

36. Judy E, Lopus M, Kishore N, et al, 2021. Mechanistic insights into encapsulation and release of drugs in colloidal niosomal systems: biophysical aspects. *Royal Society of Chemistry Advances.* 11, Pages 35110-35126. Doi: <https://doi.org/10.1039/D1RA06057K>.

37. Bhosale A, Shinde JV, Hadage M, et al, 2023. Formulation and Development of Biosynthesized Silver Nanoparticle Incorporated Gel. *Int J of Enhan Res Sci, Tech and Eng.* 12, Page 6. Doi: <https://www.researchgate.net/publication/372495963>.

38. Bhakti M, Moharil NS, Mhasal V, et al, 2017. Drug-Excipients interaction study tramadol HCl with polymers. *World J Pharm Res.* 6(13), Pages 848-861. Doi: [10.20959/wjpr201713-9876](https://doi.org/10.20959/wjpr201713-9876).

39. Vahdati M, Tohidi MT, 2020. Synthesis and Characterization of Selenium Nanoparticles-Lysozyme Nanohybrid System with Synergistic Antibacterial Properties. *Sci Rep.* 10, Pages 510. Doi: [10.1038/s41598-019-57333-7](https://doi.org/10.1038/s41598-019-57333-7).

40. Migoha CO, Ratansi M, Kaale EG, et al, 2015. Preformulation studies for generic omeprazole magnesium enteric coated tablets. *Biomed Res Int.* Pages 1-9. Doi: [10.1155/2015/307032](https://doi.org/10.1155/2015/307032).

41. Dantas MG, Reis SA, Damasceno CM, et al, 2016. Development and Evaluation of Stability of a Gel: Formulation Containing the Monoterpene Borneol. *SciWorld J.* Page 7394685. Doi: [10.1155/2016/7394685](https://doi.org/10.1155/2016/7394685).