

Benefits of Acetylcholinesterase inhibitor glutamine in Treatment of Alzheimer's disease and instrumental methods for its analysis in medicinal plants

Dobrina Tsvetkova*, Danka Obreshkova

Medical University-Plovdiv, College of Pharmacy, Plovdiv, Bulgaria

Corresponding author: Dobrina Tsvetkova, [✉](mailto:dobrinka30@abv.bg) dobrinka30@abv.bg,

Medical University-Plovdiv, College of Pharmacy, Plovdiv, Bulgaria

© The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (<https://creativecommons.org/licenses/by-nc/4.0/>). See <https://jmpas.com/reprints-and-permissions> for full terms and conditions.

Received – 10 November 2015, Revised – 20 December 2015, Accepted – 25 April 2016 (DD-MM-YYYY)

[Refer This Article](#)

Dobrina Tsvetkova, Danka Obreshkova, 2016. Benefits of Acetylcholinesterase inhibitor glutamine in Treatment of Alzheimer's disease and instrumental methods for its analysis in medicinal plants. *Journal of medical pharmaceutical and allied sciences*, V 5 - I 2, Pages -317 – 320. Doi: <https://doi.org/10.55522/jmpas.V5I2.0083>.

ABSTRACT

Alzheimer disease is a chronic progressive neurodegenerative disease, leading to memory loss as a result of the formation of amyloid plaques and neurofibrillary tangles.

Galantamine possesses dual mechanism of action as a reversible blocker of enzyme acetylcholinesterase and an allosterically potentiator of α_7 nicotinic acetylcholine receptors, leading to neuroprotection, increased dopaminergic neurotransmission, improved behavioral functions and enhanced concentration.

In Alzheimer's disease with vascular dementia or with cerebrovascular disorders as a result of its antioxidant effect, Galantamine decreases neurodegeneration and cognitive decline by improving the processes of learning, memory and attention.

By inhibition of β -amyloid aggregation and by increasing of $A\beta$ clearance through an activation of microglia, the drug protects against β -amyloid toxicity and exerts an anti-apoptotic action in cells.

For identification of Galantamine in plant extracts are described thin layer chromatographic methods in stationary phases: Silicagel G60F254 or aluminium and displaying the spots through different approaches: quenching the fluorescence at $\lambda = 254$ nm, spraying with Dragendorff reagent or iodine vapour.

For determination of Galantamine in plant extracts are reported the following methods: 1) thin layer chromatography-densitometry; 2) extraction-thin layer chromatography-spectrophotometry; 3) High Performance Thin Layer Chromatography; 4) High Performance Liquid Chromatography (HPLC) with UV-detection; 5) HPLC-radioimmunoassay; 6) gas chromatography with mass-spectrometric detection (GC-MS), capillary electrophoresis and polarography.

Keywords: Bioassay, Herbal Drugs, Medicinal Plants.

INTRODUCTION

Alzheimer disease

Alzheimer's disease is a chronic progressive neurodegenerative disorder, wherein the loss of cholinergic neurons in the basal ganglia of the cerebrum cause higher cortical dysfunctions and leads to a deficiency in memory, learning, behavioral and functional disorders and total collapse of the intelligence and mental activity. Synaptic dysfunction is mediated from increased accumulation of the peptide β -

amyloid in senile plaques and the formation of neurofibrillary tangles, composed of aggregates of hyperphosphorylated microtubule associated tau-protein.

Risk factors for Alzheimer's disease include genetic predisposition, history of Alzheimer's and Down syndrome in relatives, oxidative stress, depression, epilepsy, Parkinson's disease, migraine, hypothyroidism, brain injury, brain inflammation, high levels of diastolic pressure and cholesterol, atherosclerosis, type 2 diabetes, obesity, tumor

processes, female, pregnancy in old age, increased content of iron in the body, reduced levels of glutathione presence of aluminum in drinking water, alcohol abuse and smoking.

According to the amyloid hypothesis the process of amyloidogenesis – synthesis of neurotoxic A β aggregates of extracellular proteins is determined by: 1) E693 δ mutation of the gene for apolipoprotein E on chromosome 19; 2) mutations in the gene for amyloid- precursor protein in chromosome 213) 30 mutations in presenilin 1 gene in chromosome 14 and the presenilin gene in chromosome 2.

It was found that in the body there is a dynamic equilibrium between formation of free radicals and function of the protective antioxidant systems (superoxidedismutase, catalase, glu-tathioneperoxidase, glutathione reductase, glucose-6-phosphate dehydrogenase).

Oxidative stress is the basis of the pathogenesis of aging and a number of diseases neurodegenerative as Alzheimer Parkinson Huntington amyotrophic lateral sclerosis, Lou Gehrig syndrome down autism Schizophrenia atherosclerosis vascular diseases, hypertension, chronic renal failure, diabetes mellitus type 1 and 2, cancer diseases, macular Degeneration and psoriatic arthritis.

The brain is especially sensitive to the effects of free radicals due to high consumption of oxygen, the presence of unsaturated fatty acids and reducing the activity of sensitive oxidation endogenous antioxidant systems^[1].

In Alzheimer's disease oxidative stress arises as a result of violation of the balance between endogenous or exogenous overproduction of reactive free radicals and the decrease in antioxidant defense mechanisms. Oxidative disorders are among the early neurologic abnormalities in Alzheimer's disease and selectively occur in areas of the brain responsible for the regulation of memory functions.

Oxidative stress plays an important role in the pathogenesis of neuronal degeneration because the formation of free radicals determines the inflammatory processes dysfunction of cell membranes and activation of programmed death of nerve cells (apoptosis) by oxidation of proteins, lipids and nucleic acids (DNA, RNA) and disruption of glucose metabolism.

In the neuropathology of Alzheimer's disease important markers of oxidative stress in the brain are:

Extracellular senile plaques and intracellular β -amyloid peptides A β 1-42. Intracellular neurofibrillary tangles composed of aggregated paired filaments connected hyper phosphorylated microtubule associated tau-protein and surrounded by activated microglia and astrocyte cells and cells of Hirano

Products of glycosylation

Oxidized proteins and nucleic acid nuclear DNA mitochondrial DNA and ribosomal RNA products of lipid peroxidation acrolein 4-hydroxy-2-nonenal Hydroxy oktadekadienic acid and peroxynitrite elevated levels

of gamma-glutamyltransferase and the factors of inflammation microglial interleukin 1, α -1- antichymotrypsin synthesis in astrocytes reactive C-protein decreased concentration of enzymes hydrolysed β -amyloid (neprilysin) and sortilin 1 (intracellular amyloid part suppresses the expression of neprilysin).

The basis of the pathogenesis of Alzheimer's disease are two main mechanisms progressive accumulation of intraneuronal A β peptides and extraneuronal A β oligomers into amyloid plaques and the formation of intracellular neurofibrillary tangles of hyperphosphorylated tau (τ)-protein^[2].

Methodology

The LC analyses were performed to assess the presence of the diosgenin in samples of DV. The antinociceptive study of DV was performed using models of acetic acid-induced writhing and formalin-induced pain in mice. The anti- inflammatory study was accomplished by leukocyte migration to the peritoneal cavity. A dry extract of DV was tested at doses of 100, 200 and 400 mg/kg (per os or p.o.). The toxicological properties of the dry extract were evaluated by toxicity assays of acute (5 g/kg, single dose) and subchronic (1 g/kg/day, 30 days) treatment. Haematological, biochemical, and histopathological parameters were studied. The results are expressed as mean \pm S.D., and statistical analysis of the data were performed with the Student's t-test or one-way analysis of variance (ANOVA) followed by Tukey's test. In all cases differences were considered significant if $p < 0.05$ ^[3].

RESULTS

HPLC-DAD analysis of the extract from DV revealed the presence of diosgenin as the major compound. Doses of 200 and 400 mg/kg significantly reduced the amount of acetic acid- induced writhing in relation to the vehicle ($p < 0.0001$). In the first phase, using the formalin-induced neurogenic pain test, only the 400 mg/kg dose of DV showed significant inhibition of neurogenic pain ($p < 0.001$). In the second phase, 200 and 400 mg/kg of DV showed significant inhibition of inflammatory pain ($p < 0.0001$). Significant inhibition of leukocyte migration was observed with doses of 100 ($p < 0.001$), 200 ($p < 0.01$) and 400 mg/kg ($p < 0.01$). Haematological, biochemical and histopathological data obtained in both acute and subchronic toxicological assays revealed only unremarkable changes, which are unlikely to indicate DV toxicity with oral administration. We found that DV possesses antinociceptive and anti-inflammatory properties in rodent models. In addition, no acute or subchronic toxicity was evident when the herbal extract was administered orally. These results supporting the folkloric usage of the plant to treat various inflammatory diseases^[4, 5].

Bioassay Guided Evaluation of Medicinal (Pseudelephantopus Spicatus)

Plant

Material and Methods

Collection of Plant Material

For the purpose of botanical identification, small branches or twigs with reproductive structures, healthy leaves, stipules, bark and wood

samples from each plant were collected in duplicate following accurate documentation. Mature *P. spicatus* leaves were collected from

Preparation of Plant Extract

For the preparation of the crude extract, about 2-3kg of plant or plant parts were cleaned by washing with tap water followed by distilled water. The sample was air-dried for about 2-3 weeks, and the dried samples were pulverized using a sterile electric blender. The half portion of the pulverized leaves was soaked in pure absolute ethanol, and the other was soaked in 50:50 ethanol-water mixtures for three days. Each solution was filtered with Whatman No. 1 filter paper and concentrated at 40°-50°C under reduced pressure using the rotary evaporator²¹. For the preparation of the plant decoction, about 1 kg fresh and clean samples of the plant were cut into pieces and boiled in sufficient amount of distilled water (1:2 ratio) for 5 minutes. The mixture was filtered, cooled and stored in glass containers and freeze-dried until all the water was removed to give concentrated decoction. It was then kept until required. Stock solutions were prepared. Thirty milligrams of dried samples from decoction, crude ethanol extract and crude ethanol-water extract, were dissolved with 3000 ppm ethanol and distilled water respectively and then sonicated to dissolve the dried samples. From the stock solution, 10, 100, 500, and 1000 ppm concentrations were prepared by the addition of 5 ppm, 50 ppm, 250 ppm and 500 ppm of solution, respectively in a 20 mL test tube. Addition of a minimal amount of dimethylsulfoxide (DMSO) was done to completely dissolve the solution in each test tube.

Brine Shrimp Lethality Bioassay: Hatching of Brine

Shrimp: Brine shrimp (*Artemia salina*) lethality bioassay was carried out to investigate the cytotoxicity of extracts of medicinal

plants. Artificial seawater was prepared by dissolving 40 grams of natural table salt in every liter of distilled water. Sea water was kept in a small tank, and *A. salina* eggs were added to the divided tank²¹. Constant temperature (around 37°

C) was maintained and constant supply of oxygen was carried out. Brine shrimps were allowed to mature and hatch as nauplii for two days. The newly hatched shrimp was collected using a dropper.

Assay Proper

Ten brine shrimp larvae were introduced into each sample vials containing different concentrations of the extracts. Seawater was added to make a total volume of 5 ml.

The vials were maintained under illumination. Survivors were counted after 6, and 24 hours and the deaths at control and each dose level were determined^[6].

Lethal concentration Determination

After 6h and 24h, the lethal concentrations of the *P. spicatus* extract resulting to 50% mortality of the brine shrimp (LC50) were determined. Then, by means of a trendline fit linear regression analysis

(MS Excel version 7) the dose-response data were transformed into a straight line. From the best-fit line obtained the LC50 was derived. **Statistical Analysis:** Reed-Muench statistical method was used to determine the relative toxicity of the *P. spicatus* extracts to living organisms. It was done by testing the response of *A. salina* under various concentrations of the extract. LC50 represents the dose lethal to the half members of the *A. salina*. This was determined by plotting the mortality (y-axis) versus log of concentration (x-axis). The concentration that rendered 50% mortality was the LC50.

RESULTS AND DISCUSSION

spicatus extracts on the brine shrimp after 6 and 24-hour exposure. The extracts obtained from decoction and ethanol-water extract exhibited no lethality on the brine shrimps at any of the concentrations at 6h and 24h. The brine shrimps were still actively moving, and no signs of behavioral changes were observed. Crude plant extract with LC50 value of less than 1000 ppm is toxic while non-toxic (inactive) if it is higher than 1000 ppm²⁰. Since the LC50 in the both of this extract taken from decoction and ethanol-water mixture was higher than 1000 ppm, it was considered inactive. It may be because the active components present in the *P. spicatus* were not extracted through the two methods mentioned above. Even though decoction process is economical due to its low cost in terms of instrumentation and reagents²¹ it may be an inefficient process given that ingredients may be damaged during the prolonged heating of substances, and other ingredients may be oxidized and lose activity²².

During the decoction process, many aromatic herbs with high levels of volatile oils are easily lost through evaporation²³.

Also, ethanol-water mixture extraction process was still ineffective and it is in accordance with the previous study in which the alcohol/water mixture (typically 20-40% alcohol) is actually a poor medium for extraction. It is because it causes the desired components to condense out of the liquid therefore none is left in the finished product²⁴. The ethanol extract of *P. spicatus* showed a toxicity effect at 6h and 24h, with LC50 value at 944.07 and 266.07 ppm, respectively. This suggests that the extract could have compounds that are cytotoxic as the LC50 value was lower than 1000 ppm^[4].

Shrimp mortality rate at different concentrations in the ethanol extract was found to increase with increasing concentration of the sample, and it clearly shows that the extraction with ethanol was a better way of obtaining *P. spicatus* extract bioactive components. The previous studies show that ethanolic extract of *P. spicatus* demonstrated strong biological activity toward *Leishmania amazonensis*⁸. Ursolic acid and the two

hirsutinolides (the 8-acetyl-13-O-ethylpiptocarphol and 8, 13-diacetyl-piptocarphol 8-acetyl-13-O-ethyl-piptocarphol) isolated through phytochemical screening might be responsible for its pharmacological activities thus giving support to its use in Peru^[7].

CONCLUSION

Nanosponge are nano sized colloidal carrier so they easily penetrate through skin. Due to their small size and porous nature they can bind poorly-soluble drugs within the matrix and improve their bioavailability of drug and they also increase the solubility of poorly soluble drugs. The nanosponges have the ability to incorporate many drugs and release them in a controlled and predictable manner at the target site. Topical nanosponge can be more patient compliant and provide sufficient patient benefits by reducing repeated doses and side effects. Nanosponge can be effectively incorporated into topical drug delivery system for retention of dosage form on skin. Nanosponges are tiny mesh-like structures that may revolutionise the treatment of many diseases and this technology is five times more effective at delivering drugs for cancer than conventional methods. These are self sterilizing as their average pore size is 0.25 μ m where bacteria cannot penetrate. .

REFERENCES

1. Cosentino S, Scarmeas N, Helzner E, 2008. APOE e4 allele predicts faster cognitive decline in mild Alzheimer disease. *Neurol.* 70(19, Pt 2), Pages 1842-9.
2. Jenny A, Merima P, Alberto F, 2011. Role of β - cyclodextrin nanosponges in polypropylene photooxidation. *Carbohydrate Polymers.* 86, Pages 127– 135.
3. Renuka S, Roderick BW, Kamla P, 2011. Evaluation of the kinetics and mechanism of drug release from Econazole Nitrate nanosponge loaded carbopol hydrogel. *Ind J Parm Edu Res.* 45(1), Pages 25-31.
4. Renuka S, Kamla P. 2011. Polymeric nanosponges as an alternative carrier for improved retention of econazole nitrate onto the skin through topical hydrogel formulation *Pharm Dev Technol.* 16(4), Pages 367-376.
5. Torne SJ, Ansari KA, Vavia PR, 2010. Enhanced oral Paclitaxel bioavailability after administration of Paclitaxel loaded nanosponges. *Drug Delivery.* 17(6), Pages 419– 425.
6. Ansari KA, Torne SJ, Vavia PR, 2011. Paclitaxel loaded nanosponges: in-vitro characterization and cytotoxicity study on MCF-7 cell line culture. *Curr Drug Deliv.* 8(2), Pages 194- 202.
7. Hardy J, Selkoe DJ, 2002. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. *Science.* 297(5580), Pages 353-6.