DOI: 10.22270/jmpas.V10I4.1400
VOLUME - 10 ISSUE - 4 JULY-AUGUST 2021
Aachal Anil Gosavi*, Dr. Kishor S. Salunkhe, Gowtham M
Sanjivani College of Pharmaceutical Education and Research, Kopargaon, Maharashtra, India
ABSTRACT
The aim of the present work was to design and synthesize of mesoporous silica nanoparticles as topical hydrogel formulation for inclusion of poorly water soluble antifungal drug like Luliconazole as a drug delivery platform. The SBA-15 was prepared to evaluate its application as a carrier for Luliconazole drug delivery. Its molecular size was suitable for incorporation in to the mesoporous of the SBA-15 materials. The SBA-15 was characterized by FTIR, UV analysis, Particle size, Transmission electron microscopy. The Synthesized Mesoporous silica i.e. SBA-15 was of mean particle size of 15 nm and specific area 283.763m2/g respectively. The results revealed that prepared mesoporous silica have small particle size, high surface area, and enhanced drug dissolution rate. The results obtained showed that Luliconazole was loaded with great efficiency into the SBA-15 which leads to enhanced diffusion of drug. Luliconazole hydrogel formulations improved medication permeation across the skin appropriate polymer was used to produce the formulation (Carbopol 934p and HPMC). The physiochemical parameters of all the established luliconazole formulations were assessed, including gel appearance, pH, viscosity, spreadability, globule size, Zeta potential, and drug content. Many of the above parameters yielded positive outcomes but F1 and F3 batch results was were unacceptable ranges. It can be assumed that the formulation F1 and F3 resulted in improved spreadability, stability, and homogeneity, as well as a stronger drug release analysis.
Keywords:
Mesoporous Silica, Luliconazole, Hydrogel, Mycotic Diseases